
'ADA127073 FORCE METHODOPTIMIZATION IISOLUME I HEORETICAL
DEVELOPMEN(U) BEL AEROSPACE TEXTRON BUFFLON

U S J RRBAT ET AL NOV 82 AWA-R-82-3088-VOL
SITDU N 610C S S W4 FG12 -NL

mhEmhhhhhEEmhI
mhmhhhhhhhmhl
EEmhohhhhhmhEI
EEmhEEmhhhhhEE
EohEohEEshhhhI



111g. JQS L2

1.5.1111-25 1. 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



AD A12iY3(Y

AriAL-TR-82-3088
Volume I

FORCE METHOD OPTIMIZATION II
Volume I - Theoretical Development

J. R. Batt
S. Gellin
R. A. Gellatly

Bell Aerospace Textron
Buffalo, New York 14240

November 1982

I Final Report for Period August 1980 to December 1982

Approved for Public Release; Distribution Unlimited

* FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

LL. AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 '.

Ir I'

. . .0-



NOTICE

When Government drawings, specifications, or other data are used

for any purpose other than in connection with a definitely related Govern-

ment procurement operation, the United States Government thereby incurs no

responsibility nor any obligation whatsoever; and the fact that the govern-

ment may have formulated, furnished, or in any way supplied the said drawings,

specifications, or other data, is not to be regarded by implication or other-

wise as in any manner licensing the holder or any other person or corporation,

or conveying any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)

and is releasable to the National Technical Information Service (NTIS). At

NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NARENDRA S. KHOT, Project Engineer FREDERICK A. PICCHIONI, Lt. Col.

Design & Analysis Methods Group USAF, Ch. Analysis & Optimization
Analysis & Optimization Branch Branch

Structures & Dyuamicu Division

For the Commander

RALPH L. KUSTE4J.Co.UA
Chief, Structures & Dynamics Div.

"If your address has changed, if you wish to be removed from our mailing

list, or if the addressee is no longer employed by your organization please
notify AFWAL/FIBRA, W-PAFB, OH 45433 to help us maintain a current mailing
list".

Copies of this report should not be returend unless return is required

by security considerations, contractual obligations, or notice on a specific

document.

' I--. %- - - - -I



UNCLASS IFIED
SECURITY CLASSIFICATION~ OP THIS PAGE (tWWWOMa awodi ____________

REOTDCMNAINPAGE RAD INSTRUCTIONSREPOR DOCMENTTIONBEFORE COMPLETING FORM
1.RE1PORT NUMBER . OVT ACCESSION NO. S. RECIPINT'S CATALOG NUMBER

AFWAL-TR-82-30 8 8, Volume I I -I,~17 ____________

46. TITLE land Aab~lle) S. TYPE or REPORT a PERIOD COVERED

FORCE OPTIMIZATION II,' Final Report
Volue I- Thoreica DevlopentAugust 1980 - December 1982
Volue I Theretial Dvelomen PERFORMING ORG. REPORT NUMBER

7. AUTNOR(et) 11. CONTRACT OR GRANT NUM9ER4s)

R. A. Gellatly F33615-80-C3214

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
et ATxto AREA 0 WORK UNIT NUMBERS

DO~. ArosaceProject 2307
"N' ~~Buffalo, New York 14240Tak20N

11. CONTROLLING OFFICE NAME AND ADDRESS12REOTDE

Flight Dynamics Laboratory (FIBRA) November 1982

AF Wright Patterson Laboratories (AFSC) 13. NUMBER Of PAGES

Wrigt-PttesonAir orc Bae. hio 45433 12

UNCLASSIFIED
Iwa. ELASSI FIC ATIONODOWN GRADING

If. DISTRIBUTION STATEMENT (of ahise Repert)

- ta een'approv d
J6 b6release and sale; its

distribuiofl is unliraited.

17. DISTRIBUTION STATEMENT (of the abstract entered Its Stock"*. It different tram Report)

Approved for public release -distribution umlimited

Ill. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reverse side if necessary aid identill, by block numiber)

Structural Optimization

- Rapid Reanalysis and Vulnerability Analysis

S.ABSTRACT (C60n181n0e e er~ee aide It neessary and ieonaf& by block nuimber)

~---Investigates the utilization of the force method of finite el sent analysis
for the automatic iterative design of aircraft structures wit stress, dis-

placements, maximum and minimum size and dynamic constraints.1 Develops a
rapid reanalysis method based on the force method for damage assessment.
Research has resulteAJin.A~coputercde-naaed OPTFORCE 11 an expansion of

code OPTFORCE I documented in AFWAL-TR-80-3006. Multiple loading capabilities
and four finite elements have been included. These are: membrane triangle,2

DoFR
JA 7$, 1473 EDITION OP I NOV 64 IS OBSOLETE UNCIASSIFIED

SECURITY CLASSIFICATION Of TNIS PAGE (Whemn Date Entered)



UNCIASSIFIED

SECURITV CLAUSIICAII@# OF TIS PAGS 4NM DOW n-wed)

BLOCK 20

membrane quadrilateral, shear panel and bar (axial force). Examples of
problems solved by the OPTFORCE II code are presented and compared to the
optimization code OPTIM III for purposes of establishing the efficiency
of thethforce'omethod vs. the "displacement" method of analysis. A
technical discussion of the research conducted is presented wherein con-
clusions and recomendations for future research topics are given.

UNCLASSIFIED
A I , 

II[~~ UURI'IIY CLAM OPICATIO W O f T"IS P&S %[(llhm Date fHt l



FOREWORD

This report describes the work performed by Bell Aerospace Textron,
a Division of Textron, Inc. Buffalo, New York. The work was sponsored by
the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories,
Wright-Patterson Air Force Base, Ohio, under Contract F33615-80-C3214.

The work was initiated under Project 2307, "Research in Flight
Vehicle Dynamics" Task 2307N518, "Basic Research in Structures and Dynamics".
The work was administered by Dr. N. S. Khot, Project Engineer of the
Structures and Dynamics Division (FIBRA).

The contracted work was performed between August 1980 and December
1982.

The work was performed in the Structures and Vehicles Systems
Directorate, Bell Aerospace Textron. Mr. James R. Batt was the Program
Manager/Technical Director of the study.

gf

U: Ah.',

~iii



TABLE OF CONTENTS

SECTION PAGE

FOREWORD

1.0 INTRODUCTION I

2.0 THEORETICAL DEVELOPMENT 11

2.1 Fundamentals of the Force Method 11
2.2 Derivation of Finiti Element Matrices 22
2.3 Weight Optimj.zation Methodology 40
2.4 Rapid Reanalysis and Damage Assessment 59

3.0 OPTFORCE II PROGRAM 77

3.1 Efficiency Studies 77
3.2 Applications 103

4.0 CONCLUSIONS AND RECOMMENDATIONS 116

REFERENCES 119

i

v



V

i

LIST OF ILLUSTRATIONS

*I FIGUE PAGE

I Truss (Rod) Element 22

* 2 Plane Stress Triangle 24

3 Edge Coordinate 26

4 Edge Segment Free Body Diagram 27

5 Plane Stress Quadrilateral 29

6 Symmetric Shear Panel 39

7 Three Bar Truss - Damage Assessment 72

8 Ten Bar Truss 73

9 Three Bar Truss - Residual Strength 76

10 Seventeen Bar Truss 79

11 OPTFORCE II Input Data - Seventeen Bar Truss, Case 2 81

12 Seventeen Bar Truss Results - Case 1 83

13 Seventeen Bar Truss Results - Case 2 86

14 Four Bar Pyramid 88

15 OFTFORCE II Input Data - Four Bar Pyramid, Case 1 90

16 Four Bar Pyramid Results - Case 1 93

17 Four Bar Pyramid Results - Case 2 94

18 Wingbox Configuration 97

19 OPTFORCE II Input Data - Wingbox 99

20 Wingbox Results 101

21 Swept Wingbox Configuration 104

22 OPTFORCE II Input Data - Case 1 Swept Wingbox 107

23 OPTFORCE II Input Data - Case 2 Swept Wingbox 109

24 Design Variable Distribution - Case 1 Swept Wingbox 111

25 Design Variable Distribution - Case 2 Swept Wingbox 115

vi

*



LIST OF TABLES

TABLE PAGE

1 Ten Bar Truss - Damage Assessment 74

2 Material Properties and Constraints - Seventeen Bar Truss 80

3 Seventeen Bar Truss Results - Case 1 82

4 Seventeen Bar Truss Results - Case 2 85

5 Material Properties & Constraints - Four Bar Pyramid 89

6 Four Bar Pyramid Results, Cases 1 & 2 91

7 Four Bar Pyramid Results, Cases 3-5 92

8 Material Properties and Constraints - Wingbox 98

9 Wingbox Results 100

10 Material Properties & Constraints - Case 1, Swept
Wingbox 106

11 Material Properties & Constraints - Case 2, Swept
Wingbox 108

12 Swept Wingbox Results - Case 1 110

13 Swept Wingbox Results - Case 2 113

vii



*..+

1.0 INTRODUCTION

Modern technology of structural optimization is now nearly two

decades old. During that period an intense amount of effort has been

expended on studying the very many facets of the optimization problem. At

a conservative estimate a bibliography of over 300 references to relevant

work in this area could be compiled and, in fact, the search for the most

efficient structure to perform a given task is much older than 20 years.

The standard references to Michell, Ref. 1, and Clerk-Maxwell, Ref. 2,

can be made to illustrate that the ideals and objectives of designing

practical efficient structures are very fertile fields which have been

studied in the extreme. Yet, in comparison with the erstwhile companion

technology of finite element analysis, it must be recognized, regretfully,

that structural optimization methodology has had little, if any, real im-

pact on the design of modern structural systems. It has simply been not

possible, in general, to translate the vast research into acceptable prac-

tical design tools. While a number of operational optimization programs

have been developed - of various types - their use and acceptance has been

very limited. There are exceptions, but there has been no general utiliza-

tion of any optimization methods such as has occurred in the universal use

of finite element technology.

The reasons for this are manifold. Firstly, optimization represents

a degree of sophistication above pure analysis and hence is more costly.

Secondly, the sophistication of mathematics may be suspect by designers

and engineers who have no good reference for judging the validity of the

concepts. Thirdly, the lack of a unified thrust on the part of researchers

and developers to select an approach to the problem Is strongly indicative

of confidence in the value and validity of structural optimization and
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fourthly, the nagging concern of designers about the "goodness" of an

optimized structure. This final point is one which has long been the cen-

tral point of a major controversy. The removal of concerns about the re-

liability of optimized structures should provide a major step forward in

the widespread acceptance of optimization technology.

In this context, it is most relevant to consider the appropriate

state-of-the-art in structural optimilation and its applicability to the

present study reported herein.

In spite of the very large effort of work expended by so many re-

searchers, many of the most basic problems are still largely unsolved.

Perhaps one of the most significant areas of progress has been in scoping

our domain of ignorance. From the early days, when it was first proposed

that some methods of operations research could be linked with iterative

finite element analysis to the present day studies using Lagrangian

formulations, there has been a much greater understanding of the true

nature of the problems to be solved. The problems themselves have not

necessarily been solved - they have just been identified more precisely.

In structural optimization, with the usual limitations of fixed

geometry, etc., there is obviously a hierarchy of relevant constraints -

member stresses, nodal deflections, local and overall stability, frequency

response, flutter, etc. The precise order of higher order members in the

hierarchy is more subjective and is influenced by the types of structures

Aunder consideration. The first two, strength and stiffness are, generally,

prim requirements in virtually every structure.

Similarly, there are, theoretically, a number of potential candidate

figures of merit by which the optimality of a structure can be measured

- e.g., weight, cost, cost-effectieness, reliability. While lip-service
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has been paid frequently to some of the more esoteric merit criteria, the

overwhelming majority of the work performed has fallen back on the use of

weight for the objective function. Weight is usually important in most

structures, especially aerospace applications, since it is simple to calcu-

late and it is noncontrovertible. This is not to say that the use of the

other criteria has not been investigated, but the enormity of the other

aspects of the structural optimization problem has generally forced re-

searchers to choose the simplest merit criterion initially (and finally)

while justifying this situation, that other criteria may be usable within

a general formulation - if they can be suitably quantified. The use of

reliability as a criterion was addressed by Moses, Ref. 3, where concerns

were being expressed that an optimized structure is more likely to fail

catastrophically than a conventionally designed one. Regrettably, there

appears to have been little follow-up work along the lines of that reference.

If, in spite of the expenditure of a large level of continuing effort,

major fundamental problems still exist, what is the nature of such problems?

Paradoxically, it appears that element stresses present greater problems

than deflections.

Using a Lagrangian formulation, an exact solution may be determined

for an optimum redundant structure subject to a single displacement con-

straint. For multiple displacement constraints, the same approach may be

used, but the resulting equations become nonlinear. The solution of

these equations has proved to be extremely difficult for anything but

small-scale test problems. For stresses, attempts to use the Lagrangian

formulation were not so successful. If a similar approach to that used

for deflections is applied, the Lagrangian leads to fully stressed design.

This is correct for determinate structures but is questionable for redundant

3
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systems. To overcome this problem the effect of internal force distri-

bution with variation in elastic properties must be introduced. This has

been accomplished by using the force method of structural analysis, whereby

the redundant structures are transformed to pseudo-determinate systems and

the internal self-equilibrating force systems are treated as external loads.

The basic philosophy of the force method of structural analysis is

well rooted in antiquity, definitely predating the much more popular

displacement method. The concepts of "cutting" redundant structures,

applying self-equilibrating forces and computing influence coefficients

have been universally used to introduce novice structural engineers to

the mysteries of analyzing complex structures. The fundamentals of the

force method are addressed in many publications (see, for example, Refs.

4 and 5).

Although force method concepts are particularly simple and amenable

to a ready physical comprehension by the neophyte, it is recognized that

some computational complexity may occur in poorly formulated problems.

While the displacement method may be more difficult to comprehend initially

(the concept of a stiffness, per se, is not immediately obvious), the

ability to automate the procedure coupled with a relative lack of condi-

tioning problems, has led to its dominance in the field of structural

analysis.

In the early work in structural optimization the use of the displace-

ment method for the structural analysis stage was used, more or less auto-

matically, because of the ready availability of developed finite element

programs with extensive element libraries. Effort was concentrated on

the development of rational redesign methods using various strategies.
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Unfortunately, the most successful approach via the Lagrangian

formulation, which handles displacement constraints in a very efficient

manner, tends to break down when handling element stress constraints. The
S.

problem lies in the expression of the stress constraint in the form -1

where Si is an element force, Ai its area or thickness, and 0. the al-

lowable stress. In the Lagrangian formulation, derivatives of the con-

straints with respect to the primary variables (A i) must be formed. Since

in a redundant structure the element force Si is a function of every

element area Aj, a term OS i/A does exist. This term may be small, but

its neglect is the reason the Lagrangian formulation leads directly to

fully stressed design. In the displacement method no analytic expressoi

for 85/ A can be generated. The best that is possible lies in the use
i

of finite difference approximations. Since the optimality criteria form

a set of nonlinear equations which can only be solved using gradient methods

(e.g., Newton-Raphson), the generation of second differentials using finite

difference methods becomes computationally impractical. The solution lies

in the use of the force method formulation. In this approach, the redundant

structure is represented as a pseudo-determinate one in which Si is not a

direct function of all A . The true variation S is reflected by including

the redundant forces X as variables. By this artifice, the missing term

cS /8A is incorporated through a variable redundant force term which shows

up as a compatibility (displacement restraint) term in the basic Lagrangian.

The additional terms are explicitly differentiable and permit the generation

of nonlinear equations in an analytic form. These equations are then amenable

to solution using a combination of linear-programming and Newton-Raphson

techniques.

Based upon this force method approach a pilot program, OPTFORCE I

5
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was developed at Bell Aerospace Textron and is presented in Reference 4.

Typical of pilot programs, OPTFORCE I was limited in a number of important

respects. It was one of the principal objectives of the research reported

herein to expand OPTFORCE I into a usable computer code by eliminating or

reducing its deficiencies; the new code is aptly named OPTFORCE II.

Two principal options were available to accomplish this: Expand the

existing OPTFORCE I analysis program-through the development of new elements

and other sophistications or acquire an existing developed program and

integrate it into the optimization stage of OPTFORCE I. One of the concerns

in acquiring developed programs is the capability and efficiency of the

available programs. Their capacities, as measured in terms of element

numbers or degrees of freedom are generally adequate. The major deficiency

discovered resided in the area of frequency constraints expressed in the

force method of formulation. Thus, frequency constraint formulations were

developed and are reported in this text as well as additional finite element

formulations.

The typical form of a frequency constraint is that the basic structural

frequency (undamped) shall be greater than a given value. In some instances

a less than constraint may be specified, although this is less likely.

Hgher order harmonics are generally left unconstrained. While a frequency

is a generalized structural response, like a deflection, its incorporation

into an optimization program will introduce additional problems. Their

exclusion from standard optimization programs may be indicative of both

their difficult nature and of their lack of wide-spread usefulness.

Optimization involving frequency constraints of various types has been

explored (Refs. 5 & 6) with some success. Generally, they have been used

alone rather than in combination with the more usual stress, deflection and

6



fabrication constraints. The expanded version of OPTFORCE I provides an

integration of frequency constraints with the other types mentioned. A

full integration of the frequency constraints into an optimization program

is theoretically similar to the rigorous treatment of any other types of

multiple constraints, i.e., the problem becomes extremely nonlinear, but

solvable through the use of some form of Newton-Raphson technique.

The optimized structure may be more sensitive to damage. Hence, it is

essential to make provisions for the service reliability or vulnerability of

optimized structures. To assess the service reliability of the structures,

the concept of partial degradation was introduced. This may simulate battle

damage or any other type of partial failure which may occur as a result of

extensive service operation. To assess the suitability/reliability of the

initial structure, the behavior of the degenerate (damaged) structure is

analyzed. If the primary structure is still largely capable of carrying out

its prescribed mission even when damaged then its reliability is acceptable.

The above evaluations of reliability are clearly only qualitative in nature.

Another objective of the study program was to establish a quantitative means

for the assessment of a damaged structure.

To determine the effect of damage on the optimized structure, repeated

re-analysis of degenerate forms of the original highly efficient structure

are required. Re-analysis methods have been under development since the

work reported in 1969 by R. J. Melosh, Ref. 7, and more recently with

increased intensity by other researchers such as V. Venkayya and N. Khot,

Refs. 8 & 9. The search for more efficient re-analysis methods is para-

mount to the solution of aerospace structural optimization and damage

assessment problems. These methods are vital to the determination of the

vulnerability of a damaged structure. At the present time re-analysis

7



methods can be broadly classified into two groups; namely, direct and

iterative. The former eliminates problems associated with convergence but

could be burdened more with problems of efficiency than the latter. Con-

siderations of efficiency are of utmost importance if new design tools

such as produced herein are to become practical. Examination of the re-

analysis methods developed to date showed that viable methods do exist and

some are applicable to large scale structural analyses and design of air-

frame components. These, however, were not cast within the framework of

the force method. Thus a new method of rapid re-analysis of damaged

structures was developed including vulnerability assessment. Vulnerability

methodology must account for the interaction of optimization-reanalysis

programs in order to provide sufficient details of the damaged structure

such that, for example, residual strength can be determined. Another item

of vulnerability is the change in the vibration characteristics of the

damaged structure. Perhaps what is of most importance is the ability to

define the level of vulnerability or in other words the ability to deter-

mine the operational capability of a damaged structure. This facet of

vulnerability was investigated and is provided.

As a result of the efforts previously described a set of analytical

tools capable of designing lighter and less costly structural components

is available to the designer. It was appropriate then that efforts were

expended to analyze representative structures in order to demonstrate the

utility of the computer codes developed. This was accomplished on

structures varying from relatively simple trusses to a swept wingbox air-

craft structure. Details of the analyses conducted are presented.

The analytical tools developed and based on the force method of

finite analysis increases the versatiblity and scope of analyses which can

8



be performed using the force method of approach provided in OPTFORCE 1,

Ref. 4. However, two fundamental questions remain: Does the force method

offer an improvement in efficiency resulting in lower computer costs

compared with the displacement method of finite element analysis? And

which of the two methods is the most accurate, i.e., which one provides

the "correct" minimum weight solution?

As noted in the optimization'literature when the iteration algorithm

is based on the displacement method of finite element analysis, a complete

re-analysis of the structure must be conducted whenever large changes are

made in the design variables. Thus, substantial computational effort is

devoted to the analysis of the structure. In the force method, the basic

framework of computational effort is not increased with changes in the

design variables after the basic and redundant load system is selected.

This should mean that there is an improvement in efficiency and a speedup

in the iterative analysis for the force method algorithm. Hence, a

comparison of computer cpu time expended by the OPTFORCE II program solv-

ing classical problems with known solutions, versus an existing displace-

ment method optimization program OPTIM III, Ref. 10, solving the same

problems was conducted. This provided the needed comparison data to

answer the fundamental "dollars and cents" question. More importantly,

these comparison studies also provided a means to assess the relative

accuracy of the two optimization codes. These items formed the basis

for recommending future development of a general purpose optimization

program.

Thorough discussions of the technical areas discussed above are

given in Sections 2.0 and 3.0. Section 2.0 presents the theoretical

background of the OPTFORCE II code and emphasizes the expansion of the

9



pilot program OPTVORCE 1. The discussion commences with a review of the

fundamentals of the force method in Section 2.1. Derivation of finite

element matrices for bar (axial force), membrane triangle, membrane

quadrilateral and shear panel elements within the context of the force

method are presented next. Weight optimization methodology is given in

Section 2.3 including provisions for handling variable stress, multiple

displacement, maximum and minimum Size, multiple loading and natural

frequency constraints. Rapid re-analysis and damage assessment technology

is presented and illustrated in Section 2.4. The newly developed OPTFORCE I

code is amply exercised in Section 3.0. Efficiency studies and applica-

tions of the code to a swept wingbox structure are described. Program

j results are profusely given to enable the reader to fully understand its

capabilities. It is noted here that Volume 2 (Ref. 11) of this report

presents details of the program and the input/output format of OPTFORCE II.

A technical discussion of the research conducted is presented in Section

4.0 wherein conclusions and recommendations are given.

10
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2.0 THEORETICAL DEVELOPMENT

2.1 Fundamentals of the Force Method

The force method of analysis was used to model structural behavior

and determine minimum weight under static loading. An additional requirement

above the static constraints of minimum size, stress and displacement was to

constrain the structure from having certain of its fundamental vibration

frequencies falling within a specified range. In order to accomplish the task

of stating these frequency constraints in a particular mathematical form

compatible with the weight optimization method as set forth in Section 2.3,

below, it was necessary to formulate a force method dynamic analysis that

would yield frequencies and modes when the structure was in a state of free

vibration. What follows is a discussion of the theoretical basis for both

static and dynamic analyses.

2.1.1 Basic Static Analysis

A force method formulation is based on minimizing the complimentary

energy functional with respect to parameters used to describe a chosen approxi-

mation to the stress field. The requirements for the approximate stress

field are that it satisfies equilibrium throughout the body, that the stress

boundary conditions are satisfied, and that the choice admits non-trivial

solutions, at least a priori. The principle of minimum complimentary energy

may be written as

6U* + 6V* -0. (1)

11



U* is the complimentary strain energy and V*, for a finite

element idealization of a body, is usually

V* - {}T {A} (2)

where (P} and {A) are the finite element nodal forces and dis-

placements, respectively.

The stress field for each element in the structure is given by

the following expression,

E - ] {S i (3)

where the (N are functions of the spatial coordinates defined for the

element and {Si ) are the undetermined parameters for the stress field,

which serve as coefficients for linear combinations of the (N]. The (Ni]

must satisfy the homogeneous equations of equilibrium, and must admit a non-

trivial solution for each stress field in i . The number of parameters {S i

must be at least the number of degrees of freedom for the element minus

the minimum number of support forces needed to suppress rigid body motion

of the element. With the constitutive law written as

CEI (4)

,I

the complimentary strain energy for the ith element is

-2si 1 {s 1 (5)

12



where the element flexibility matrix is

ff ffiijT -El l dV.(6

V

The total complementary strain energy of the structure is the sum of the

individual strain energies of the elements. If fS) is the collection of all

the {S and [f] is a matrix formed by placing the [f along the maini i
"diagonal" of an otherwise trivial [f], then this sum may be written as

u, {S) [f]l {s). (7)

A relation between {S) and {P} must be found in order to use (1)

find a solution. The derivation of such a relation presents the greatest

difficulty in the force method formulation particularly when the {S} are

devoid of physical meaning. One approach is to relate the {Si) of an element

with {F } the element nodal forces. The criterion selected for this relation

is that {Fi) be chosen such that the work done by the traction field, as

calculated from the stress field evaluated on the element's boundary, is the

same as the work done by {Fi) through the nodal displacements. To accomplish

this, it becomes necessary to choose a boundary displacement field u in

terms of the nodal displacements {Ad; thus,

u 1 (Y 1 1(hi).(8)Ii-- I Yi {A,)}

The work-equivalency criterion is expressed as

('60 T ([y i T [Li] dS) Si} {A,) T {Fi} (9)

S

where [Lii is [Nil evaluated on S. Equation (9) yields the relation

{ "i) [Bi (S 1 ) (10)

13



where

[YiT  LI dS.
S

The introduction of [Y,] into the formulation gives it a hybrid character

(Ref. 12). While the choice of u appears arbitrary, an interelement continuous

shape would be best to choose.

The collection of equations (10) may be written as

{F) - [Bl {s}. (12)

It is also convenient to include in both {F} and {S) the set of reactions

{R). Equilibrium equations are now written for each degree of freedom as

(P} [C1 {M} (13)

where [C] is a Boolean matrix. Substituting (12) into (13) yields

(P ] [A] (S). (14)

If the structure is statically determinate, then [A] is square and invert-

ible, and (14) is solved directly for {SI, and thence the stress field.

In order to find the nodal displacements {AI, equation (14) is sub-

stituted in (1) and variations are taken with respect to {P}, yielding the

relation

(([A]-I)T [f] (A]-) {P} I (4) (15)

The matrix product pre-multiplying {P) in (15) is the global flexibility

matrix of the structure.

If the structure is statically indeterminate, the number of columns

of LA] will exceed the number of rove; thus, partition (14) into

{P} ) Ao  A, (16)

14
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where [A) is square and invertible. The subset {X} of (S) are known as

the "redundants". Solving (16 )for {S yields

f -[--' (A {X) + (A31{rP (17)
( sI - -[A [A1  17
o0

Combining (17) with identity relations for X} gives

S{S) = {bX] (X}+ [D] {P} (18)

where

[b1 -  [[A°0 (A1) ; (D] (19)[1) [0]i
Equations (18) are used in (17) , and then substituted into (1) , with

variations taken with respect to both X} and (P}. The two sets of equations

formed are

[0] xl + [DP1 {P - {0 (20a)

[O]T {X} + CrC, = {A} (20b)

[ 1 ,1
T  f [b 1 ; [0]) [bl1) Ef] [D]; En) [DIT [f] CD]. (21)

Equations (20a) are solved for {X), and may be used in (18) to sub-

sequently determine the stress field throughout the structure. Substitut-

ing (20a) for (X} in (20b) yields the global flexibility relations

'# (] Wp} - {A} (22)

where the global flexibility matrix is

41, ] -EIn] - [v)T [y1 [ 3. (23)

Note that since (P) is known and {a) is unknown that (15) or (22) need

15
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not be inverted; on the other hand, the inversion of (An] requires the same

amount of effort as the inversion of a global stiffness matrix.

In order to facilitate incorporation of the above formulation into the

weight optimization method, several special properties of the force method

need to be recognized. First, the finite elements used have volumes which

can be written in the form

V, W Ai R (24)

where R is a one or two-dimensional element domain and Ai is the correspond-

ing two or one-dimensional element size. For a given structural layout and

discretization, Ri will be fixed for an element with Ai to be determined.

Furthermore, the bounding surface of the element can be written as

S, M Ai Ci  (215)

where Ci is a one or zero dimensional "curve" surrounding Ri.

Suppose that the parameters for the stress field {S i are dimensionally

given in units of force. This seems logical if the set of reactions are to

be incorporated with (S}; furthermore, matrices [B and thus [A) become

strictly non-dimensional under this assumption. If shape functions INi

are defined as

(Nil - Ai [Nil (26)

then use of (26) and (24) in (6) yields

[f - I A rI1  )E) 1 (1 [Ni) Ai dRi A If 1  (27)
Ri i

where If is independent of AV . In addition, (26) and (25) are used

in (11) to form

16



V

(Bi) = C [yJT(_ I i) Ai dCi (28)
C i

where Li is IN i evaluated on Ci, thus rendering [B~I independent of A..

The result is that (A), and thus [bl] and [D] are independent of the element

sizes and strictly a function of the geometric layout and discretization

of the structure. This eliminates repetitive computations as element sizes

are changed during the weight optimization analysis.

The second special property of the formulation becomes apparent when

equations (18) are partitioned by elements; thus,

{Si } = (b1 I {X} + [Di P}. (29)

In addition, the reactions are calculated as

{R) - [bR I {X} + IDR) {P} . (30)

The diagonal nature of If), combined with the partition (29) and (27)

yields for the expressions (21)

N N
NE ri= NE J~1  ), t =1 E 1E 1 (31)

where NE is the number of elements and

C = [biJTcli](bi];[ i] - (biT[i](D,];(,i] - Di'c ] CDi] . (32)

Note that [Rill [i and [n i are independent of Ai, and that the Ai

dependence of the basic static equations .(20) may be explicitly written.

17
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2.1.2 Basic Dynamic Analysis

As stated above, a force method approach to solutions of structural

problems requires that equilibrium be satisfied throughout the body. In

order to extend the force method to problems of structural dynamics, it

is required that the appropriate forms of Newton's second law be satisfied

throughout the body. It will be convenient to use D'Alembert's principle

and introduce "inertial loads" into the equations of "dynamic equilibrium".

When analyzing a structural dynamics problem using a finite element

lumped mass approach, the structure is assumed to be composed of particles

at the node points containing mass, connected by massless elements. Since

the elements will have no inertial loading as a result of this idealization,

the equations of dynamic equilibrium reduce to those of static equilibrium.

Thus, the static shape functions [Ni] may still be used to describe the

stress field within the element. The formulation proceeds exactly as in

the statics case from equations (3) - (12).

Equations (13) must be modified to include the inertial loading

(P I} as part of the overall "external load". With {P} designating the

actual applied loading only, (13) is changed to

[P) + (Pl = [C] (F) . (33)

The formulation proceeds much like the statics case, except (P} + (P I is

substituted for (P) in the equations where it appears. In particular

(22) (or 15) becomes

[ ) ((Fl + (PI1) I (A. (34)

The inertial loads are related to the displacements by

P " -[M] {A) (35)

18
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where [M] is the diagonal lumped mass matrix and a dot indicates a time

derivative. Integrating (2.35) with respect to time from 0 tro t gives

(At)- {A0  -[M2 t {P (T)} dT (36)

where (AO} are the initial nodal velocities. Integrating again yields

{A(t)) -fAo} + {AO}t -.[M ]- of t (t-T) P I(T)} dT* (37)

where fA I are the initial nodal displacements. Substituting (36) into

(34) and rearranging terms yields

{I + CM 11Oft(t-T) {PI(T)} dT {A0 } + I} - {Astat (t)) (38)

where

{Astat (t) - (1] {P(t)) . (39)

The basic equations (38) are integral relations with (P I as the basic

variable. Differential equations with {A1 as the basic variable could be

derived, but that type of formulation would not be in the spirit of the

force method, where forces are the basic unknowns. Furthermore, the form

of (38) is directly analagous to a stiffness formulation.

Fundamental modes and frequencies for the structure may be found

by formulating the free vibration problem. Assume that {P may be

written as

.{PI} I {PIc } cos Wt + {PIs} sin Wt . (40)

*f t[ ft {P (T)ld)dt'- tf t {P (T)ldT It-0ft t'{P (t'))dt'
0 0 10 0

0

= t {PI(T)}dT -OfTPi (T)}dr

o ft(t-T) {P (T)} dT

19



Using (40) in (38) and remembering that for free vibration (P(t)1 (01,

gives

([ J - . [Mr ] -1 ) {P1) + (-! [xt] - {P 1 } -(Pi1

(41)

+ (.1 [M1-I {ePi. _ {Ao})t " {0)

With {Ao} and {AO) arbitrary, {Plc} knd P IsI may be chosen such that

(41) reduces to

- 2 1[M ' )() {P1 ) = (0 . (42)

In order for non-trivial [P11 to exist, the determinant of M] - - -[i]1

must be zero. The resulting equation yields the fundamental frequencies.

In order to facilitate the numerical calculation of modes and frequencies

by using standard matrix operation subroutine packages, it is desirable

to make the substitution

{PI) = [MiJ' (q} (43)

in (42). Note that [N,)4 is easy to calculate, considering the diagonal

nature of [M.]. Pre-multiplying (42) by [M'] gives

([]- 1 [1]) {q}) -{o} (44)
([h]

W

where

[Q] - [3M IM [3 ]M • (45)

Thus, the fundamental frequencies are the inverse square roots of the

eigenvalues of [QI.
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The eigenvalues of [Q] are found simultaneously. Suppose the kth

eigenvector, i.e., the one corresponding to frequency wk' is denoted as

thn tekth k tf{qk); then, the k inertial load mode {PI is found from (43) . the kth

redundant "force" mode from (20a) the kth parametric mode from (18) ; and

the kth stress mode from (3) . The kth displacement mode is found most

easily by comparing (42) with (34) to yield

1 [M k

{A [M I {pi k  (46)

Mode normalization may take place on either P Ik } or {Ak ) .

The diagonal mass matrix NO may be found as a function of the

element sizes. Introducing the mass per unit volume, pi, the mass of the

i t h element is written as

mi iVi = Pi Ai Ri = Ai m1  (47)

where use has been made of (24) ; thus, m iis known from input data. This

mass is equally divided and assumed lumped at the node points of the

element. The number agi is the fraction of the mass of element i located

at node g. Note that Ogi can be defined as zero for those nodes that are

not part of element i. Arbitrary criteria for assignment of Bg, to the

various nodes may be made. In the present study, gi a l/NN t where NNi

is the number of nodes associated with element 1, was chosen. If g' is

a degree of freedom associated with node g, then

H NE -
SBi mi Ai (48)

Problems of forced vibration, as well as a consistent mass formula-

tion, may be derived, but were not utilized in the present study. The

interested reader is referred to Reference 13.
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2.2 Derivation of Element Matrices

Material and geometric information combined with an admissible choice

for a stress field will produce matrices for a given element. In fact, only

two matrices are of importance (at the element level): [f1 3 and [B 3. Both

of these are defined relative to local coordinates. The [B i matrix must be

transformed to global coordinates before incorporating it into [B) for use

in equation (2.12).

2.2.1 Truss (Rod) Element

Figure 1 shows a typical truss element. The x axis indicated is

a local coordinate axis. The element's domain consists of the points

O<x<L, while the "bounding surface" is simply the node points. A single

parameter S is used to describe the stress field:

F1

ax 1 s (49)

SF1,A 1  1 2 F 2',A2

Figure 1 Truss (Rod) Element
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where A is the cross sectional area of the truss element, and serves as the

element size. Thus

with

[EJ 1  
(51)

For this element,

0LI
[ - = L x LIE . (52)
[f) - f - dx =/ (2

In order to find [Bk3, it is important to realize that C t may be

made up of n natural subdivisions C , j l,, n. Thus

S[BiI] = 2. fj [Y i J T [i J 3 dCijJ •

j-l ci (53)

For the truss element, CiI is node 1 and Cl2 is node 2. Thus,

(YI 11 Yi] [ 2 ] =[ ( L 1) [-l] &L ~2] 1 (13 (54)

Substituting (54) into (53) yields

[B] - (55)

2.2.2 Plane Stress Triangle

Shown in Figure 2 is a typical, triangular shaped plane stress

1"4
element. The x and y axes shown are the element's local coordinate axes.

The element domain consists of the triangular region enclosed by the

boundary edges. Three parameters are used to describe the stress field

23
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T

x 1 0 0 S1

1 0 1 0 S2  (56)a 2

xy 0 0 1 S3

F ,A

y y y 3 3

x3, x3
3 3'

FytlA Yi ' 2' Y2-
xx

-

1 F A 2 F A
1 x1 2

Figure 2 Plane Stress Triangle

where t is the cross-sectional thickness of the element, and serves as the

element size. A is the triangular surface area, whose square root serves

as a linearscaling factor. The [N) matrix is simply

WN L' (57)

Orthotropic matertal behavior will be assumed. When the material axis,

X, is aligned with the xe axis, the 3 x 3 compliance matrix is written

in the form

24
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E , Ex  x x_ 0

O y x

where the m subspript refers to the material axes. For a general set of

axes, where * is the counter-clockwise rotation from the element's x axis to the

corresponding material axis, the elements of [E] - I may be written as

follows:

S cos 4 + - sin 2  cos 2  + 1 sin4

-1 1 sin4  + 1  - 28) sin2 2 co 2
(E-122 *+ --- co - cos

22 E Ex xy y

x y y

-1 2zl 21 1 .22

(E-1)3 4 sin 2 cos + -+ 2) + 1 (coS - sin 0)

(E-1 (E1 ) Wcos 4*+ sin 4 ) +[- ---- 3 sin 2 *cos2 01
12 21 T E

xy x y

-lF-)3 { 2--2 2

(E-1)3 ( sin * cos 0 n -cos - sin 2

x y

12 2

+ 0 s22) (cos *-sin 4 )}

25 (59)



where
V V

E Eo ( -a (57) 
(60)

x y

Use of (59) and (57) in the calculation of If I yields

[ ] [ (]- (61)

The calculation of (Bi] is performed by summing the contribution

from each edge of the element. Figure 3 represents a typical edge of a

triangular (or any general polygonal) element with nodes (i,j) at the end

of the edge. The displacement fields ui-j are defined to be linear in the

edge coordinate x', thus

u_ [ Wi ) ] 0 .... 1 - 0 0 X . {] } 6ui- L i -j (x') 
0f 

.. 

... 

0-' 
0

where
{A}T [a 9..A -A * A SA -A

x, y1 X" " i xj Yj N . N

xv

i~ 

£9

Figure 3 Edge Coordinate
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N is the number of nodes for the polygon element. Note that [¥i is a

(2 x 2N) matrix, and thus for the triangular element it would be of order

(2 x 6).

To determine the traction field for an edge, equilibrium must be

satisfied for an edge segment. Noting Figure 4 , the traction field is

determined as

T ) n 0 - Cos 6 aX(3

T -os sin
yy

JO dx' cos 0

T dx' sinO

T X~jT dx'

T~ dx'

a dx' sin 0 T x dx'

Figure 4 Edge Segment Free Body Diagram

where the stresses are evaluated on edge i-J. For the constant stress

triangle, the relation is (2.56); thus,

. "~~~~ [0 0 - -c o s e .( 4* .0 -Cos e sin

Using (64) and (62) in one term of (53), say, edge 1-2, gives

27

------- *.------.- - - - - - -_2 -*-. -7,57. -



1-x'/t' 0

0 l-x'/t'

x. 0 01 0 -Cose dx'

So Lon
[B1 FA- 0 x' CosO sine]

0 0

y2-y 1  0 - (x 2 -x l )

0 - (x2-x1) Y2-Yl

1 y2-Yl 0 - (x2 -x1) (65a)

[B1-2 2-4A 0 - (x2-x1) Y2-Yl

0 0 0

0 0 0

where the subscripts pertain to the local coordinates of the elements grid

points.

Similarly,

0 0 0

0 0 0

Y3-Y2 0 - (x3-x2) (65b)

[B2 3 ] 24A 0 - (x3-x2) y3-Y2

y3-Y2 0 - (x3-x2)
0 - (x3-x2) y3-Y2

yl-y 3  0 - (X1 -x 3 )
S- (X-X 3 ) Yl-Y3

0 0 0

[B 3-1 1 0 0 0 (650)
21A 0 -(x-x)

Yl-Y3 13

0 - (x1-x3) Yl-Y3
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Adding (65a-c) to form [B gives

i

y2-y 3  0 x 3-X 2

0 x3-x 2  y-Y33 23 23
x-1

[B = Y 0 X X31. 24 3-YI1- 3(6b)
0 x2 -x 3  y3-y(

yl-y 2  0 x2-x1

0 x2-x 1  yl-Y2

2.2.3 Plane Stress Quadrilateral

Figure 5 shows a typical quadrilateral shaped plane stress

element. The x and y axes shown are considered to be the elements local

axes. A minimum of five parameters are necessary to describe the stress

y ye F 39A Y

Ye
n F AY4 Y4 3Fx3 Ax

X 3 x3

3 3 xU

F ,FA A

F ,X

1 F ,9A 2 F , A xl 'xl x2 x2

Figure 5 Plane Stress Quadrilateral
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field. The admissible functions chosen were

a x  Y_ 0 0 0

1 IA! A 1(1ay t[ 0 -- -- 0 (S} (67)

xy 0 0 0

where {S)T  ( Si S S S S and [ij is the (3 x 51 matrix on the

T 29 2'39 4 #s 5) J-
right-hand side of (67). The compliance matrix (E]-  is the same as

that given for the plane stress triangle element. Performing the calcula-

tion for (fJ yields

(E-)1

Yc -1 _x
(E l1 A- symmetric-
(r-l A2

(f] (E-1)21 !c ( - 1 21 (E-1)22

4"A

21 A 2 A 22 A2  22

(1p(E 1  (E- 1 X ( -1 -(E c

1)  _ 31 (E 32 _ ( 32 (E-)-31 Z A 3

"b (68)

where A is the.surface area of the quadrilateral; x and yc are the

coordinates of the centroidal position; and I, 1 and I are second
yy NY

moments of area.
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As with the plane stress triangle, the edge displacements are

assumed linear. In addition, the relation (63) holds, but now the

evaluation of the stresses are more complex due to the coordinate

dependence as specified in (67). In order to express, for example,

the stresses on edge 1-2 due to x' dependence, it is worth noting that

the relation between x or y and x' is linear and thus can be specified

much like the displacement along the edge:

x = x I [I -, + x 2

(69)

[I X XT

Y = Y1 [I - ] + Y2

Thus for edge 1-2

n 0 -co[Yl- ' 0 0 0

C 1 2 ) 0 -cose sin 0 0 '-[.A x 2-W-1 0

0 0 0 0 1

sine sine X0
A (1- ,)+.2 3 0 -cosO

-1cosO- -co ji ,.)+x 2' x'in

A OAXl(1- 4:4

(70)

31

- --- - . - - -- - - i



o to
-~ 4 D

~ 0000

I xj. 0 0 0

a0 0 x

CD 0

00

00

0 D 0

0:

P-41 L r-4 - 4

32



4,.4

>I ~ 4 1-4%-

x '4

~ L-

x 33



N~ 0I

9 x
+ r4

('4 +

I en

+. N

tNN

N S 

N

'-4j

-34

0 0 00



C..

-4 1 SL* I

-t -t

0 0 0 0 ~ L ~ 0en,

r-

35



PC~

-

14

C) 0

6k I-



_ 
44

C4

K 4 4 K 4 en 4

IVI

-

4)4

-4 -.-*.3.



2.2.4 Symmetric Shear Panel

The thoretical formulation for a shear panel may be approached in

various ways. One way would be to consider it to be a special case of a

plane stress quadrilateral with normal stresses identically zero. Thus,

for a general quadrilateral shear panel

T IS (74a)xy tA-

[f] : ( (74b)

[B = -(x 2 - x 4

Y2 -Y4

-(x 3  1)

Y - Y(74c)

-(x4  x )

Y4 -Y2

-(x1 I x 3

YL - Y3 _

Equations (74 a-c) are taken from (67), (68), and (73) where S5

- (here identified as S) is the only non-zero parameter. The element

apparently has eight degrees of freedom, but only four are independent;

or, shifting the argument to a force method point of view, the loads

on the panel must be such that the constraints implied by (74c) are

satisfied; that is, a panel that is supported against rigid body motion,

may not be loaded in an arbitrary manner at the free nodes and still
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maintain its identity as a shear panel. It is quite possible that a

structure assumed to be composed of quadrilateral shear panels would

yield equations (14) with dependent or contradictory equations.

Since the primary application of quadrilateral shear panels is

modeling spar webs in wing structures, the most obvious solution to the

problem described above is the creation of a symmetric web element,

L i Figure 6. In this form, only half an element is used in the analysis,

and thus only two nodes remain. When rigid body modes are restrained,

only one degree of freedom will remain. Note that some support condi-

tion on nodes 1 or 2 implies some loading on the lower, non-analyzed

Ye F ,A

2 Y2

2 

FYl AYi
I 1 Xl>'l

e e

Figure 6 Symmetric Shear Panel

half of the web. The element matrices may now be written for the (upper

half of the) symmetric shear web as

ST xy - [x 2 _x) (yl+Y2)J (75a)
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G '-" (75b)
xy

[(xy2-xl /(Yl+y2) 

(

-[(Yl+Y2)/(x2-xl)]Ii[Bt = (2_xl) / (yl Y2) 3 (5c

C(Yl+Y2) /(x2xl)34

where, in (75b) the x axis is chosen as the material axis.

2.3 Weight Optimization Method

In this section, the optimization method developed is described. What

is desired is to obtain the minimum weight of a structure of given geometric

layout, material properties and loading that satisfies a set of size and

structural constraints. The basic unknowns of the optimization procedure

are the element sizes, Ai, i-1, ..., NE, where NE is the number of elements.

2.3.1 Theoretical Basis

The theoretical basis for the generation of the proper equations

for the optimization procedure are the Kuhn-Tucker optimality criteria

(Reference 14). These criteria are formulated by extending the standard

"Lagrange multiplier" method of optimizing a quantity subject to constraints

to cases of inequality constraints. An informal review of the theory is

now presented.

For the basic Lagrange scheme, a function Zf (xl, x2, ... , x )

subject to equality constraints gi (x, x2, ... , xm) 0, 11, 2, ..., m<n,

is to be optimized. A quantity known as the Lagrangian is formed as
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I

I. = f(xj) + E X i gi(x) (76)

Derivatives are taken with respect to each x. and X and set to zero to

obtain the system of equatibns:

L + m x a8
g i

E i- = 0 j=l,2,...,n (77a)

DL

a 9- W 0. 1-l,2,...,m (77b)

Equations (77b) are just a reiteration of the constraint equations. The

system (77) contains (m+n) equations for (m+n) unknowns. Note that there

are no restrictions on the signs of either the x's or the X's.

Suppose the optimization problem contained inequality constraints,

say, less than or equal to constraints, and the function Z is to be

minimized subject to those constraints. Then a set of variables Gi may

be introduced to make the inequality constraints equality constraints by

2
g8 + G = 0 1 - 1,2,...,m. (78)

Now the Lagrangian is

E i (g + G 2 " (79)

- Taking derivatives with respect to xj's, Xi 's and G1 's.gives

Xi aL f m ag1

ax =  + 1 - 0 (80a)
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ai - + - 0 (80b)
ax 91

DL 2XiG, W 0 .(80c)
3G 2AG

Equation (80c) implies that either Xi or Gi equals zero. If Gi  0,

then gi - 0, that is, the constraint is satisfied at equality, or, as

it will be described later, the constraint is "on". If Aim 0, then G

would not necessarily be zero and the corresponding constraint is giO,

or satisfied in the inequality sense, or "off".

Since a minimization is required here, the pure second

derivatives of L must be non-negative; in particular, from (80c).
2L

a 2L . 2 X > 0 (81)

xi

or, that the Lagrange multipliers must be non-negative. The discussion

above allows for the elimination of G from the analysis by writing for

(80b, c):

If Xi m 0, then gi so;

If Xi > 0, then g, a O; (82)

Ai non-negative.

Greater-than-or-equal-to constraints may be multiplied by -1 to convert

to less-than constraints, or their corresponding multipliers must be non-

positive. Since a strict equality constraint can be thought of as

simultaneously a less-than and greater-than constraint, the Lagrange

multiplier will be unrestricted in sign, as seen above in (77).
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It is necessary for the generalized problem, then, to satisfy

equations (80a) and conditions (82) at the optimal condition. There

may be other extremum where these conditions are satisfied as well. Only

when certain conditions of convexity are satisfied are these conditions

sufficient for an optimum; furthermore, the equations themselves give no

clue on how to solve them.

2.3.2 Problem Formulation

The solution method for a system of equations such as (80a) and (82)

can only be determined after the specific form of the system is known. The

weight optimization problem is thus formulated. The total weight of the

structure must be minimized; hence, the function Z is

NE
W W A 1(83.)

where Wi is the weight per unit element size, and may be calculated as

1 9g (84)

where mi is defined in (47) and g is the acceleration due to gravity.

In addition the structure is subject to the following constraints:

a) Minimum size constraints: The element sizes (thickness, cross-

sectional area) must exceed a certain minimum (positive) value due to

constraints arising from manufacturing capabilities. If the minimum

value for the ith element is A,, then

A > A i-, 2, ... , NF. (85)
i i

b) Maximum Stress Constraints: Suppose the yield (or some other

failure) stress for the ith element is a,. Then a stress constraint must
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be in the form

<ei i -1,2 .... , NE (86)

where a e is an effective stress measure. Not only does a e depend on

the element sizes, but it also depends on the state of loading.

c) Displacement Constraints,: A typical displacement constraint

is in the form

Aj < j = 1, 2, N (87)> • DC

where A1 is the limiting value on the Jth displacement that is desired

to be constrained. The number of such constrained displacements is NDC*

d) Frequency Range Constraints: In general, these constraints

may be written as

> k- 1, 2, ...,N (88)

where Ok is the k 'th fundamental frequency to be constrained to the Lth

extreme value w for the Eth constraint in the set of N frequency

constraints.

While the mathematical forms of the constraints are rather simple

to write, the actual calculation of the left-hand sides in terms of the

element sizes are not simple for either force or displacement method

formulations. The form of (80a) demands that an explicit differentia-

tion of the constraint equations (when stated in a specified form) with

respect to the element sizes be performed. In Section 2.1 of this volume,

the dependence of many of the basic matrices on the element sizes is

explicitly given. The state of the applied loading, of course, is also

given; however, the set of redundants, {X), hich acts as a conduit of
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information to find the displacements and stresses, cannot be written in

a direct, explicit manner as a function of the element sizes. It may be

advantageous to extend the set of basic variables to include {X}; and, if

done, the relation between X} and element sizes must be explicitly written.

This relation is nothing more than (20a) , and will serve as another set

of constraints. Note that the explicit element size dependence in (20a)

is one which is a sum of terms each containing an element size in the

inverse first power. The displacements are calculated from (20b) , where

this condition also exists, as well as (3) used to calculate the stress

field. It thus seems likely that constraints (86) and (87) will also

be in this form. Equations (85) can be converted into this form as well.

Excluding (88) for now, the constraint equations may be rewritten in one

of two forms:

NE C 1<
bE jij - I O(89a)

or
SN EC2 <

ZE -i2 0 (89b)

j=l A

Substituting (89) and (83) into (76) yields

NE - m 1  NE Cl1 n12 2 NE C2(

L - WA + A Z +Z-X 1) + E i  ( ) (90)
."i lI- 1 J-1 A j I 1 J-1 A j

where m1 and m2 are the number of constraints of the type of (89a) and

(89b) , respectively. Differentiate (90) with respect to A K to yield

DL - l 1 2l 1 2 2 2 (1BA -k i Al  Z Xi C k A '91
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Now form

NE aL NE m1  1 NE C m2  2 NE C 2

L + L A k A E W i A + xi (  E -i ui  1) + E. xi E : a
k=1l m i=l J-1 Aj iml J=l Aj

M 2 m

N N NE 1 2 C 1 2+ E k - E .-- 1 2 Cl - E- - Ei xi i A 2W--
ki k- Ak 1=1k1k 1=iik-l k-1 i-1

(92)

Evaluating (92) at the optimum condition will imply

L W* ; =O, k=1, ..., NE (93)

where W* is the optimum weight; thus, substituting (93) into (92) gives

E A, l w,  (94)

at the optimum design. Thus, the sum of the Lagrange multipliers for the

constraints written in the form (89a) equals the minimum weight of the

structure for the optimum design. This circumstance will play a prominent

role in the solution algorithm.

The constraint equations are now rewritten to be in one of the

forms shown by (89).

a) Minimum Size Constraints - Equations (85) are rearranged to

form
<4 *

gA i - 1 U U L 1 1, 2, ... , NE(95)
i
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b) Maximu m Stress Constraints - The effective stress measure 
is

dependent on the physical 
assumptions used for a given element as 

well

as the mathematical form 
of the stress field in 

terms of the chosen

2 2

stress parameters. In general, a Mises-Renchy criteria, (o0 y- G +3x - )XY

will be used for all the elements.

i) Truss Element

2. 1 i (96)

ei

ii) Plane Stress Trian l

e (02 
+ a2

- _a + 3T 2)

e1  x Y Y x

1 2 2 2- Y 2 
(7

W12 S 3 ) 
(97)

iii) Plane Stress Quadrilateral

e (a x 2 
2)11

x y x
1 - 2 c _c

- t1.F C S 12 + ((3+S4  MY 4 ( 3 S4 F) 3S 51

(98)

Note that for this element, 
the stress is evaluated 

arbitrarily at the

centroid of the quadrilateral.
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iv) Shear Panel

Oe * 3r -2 i s (99)
exy A

It is noted that in each case, (96) - (99) , the form of the equivalent

stress is

Y ({S 1)

a = i A (100)

i

where Ai represents the element's design variables, t or A.

Substituting into (86) and rearranging yields
Y i ({S }) < (101)

= Y (i9 - 1 0 i - 1, 2, ... , NE

A i G

c) Displacement Constraints - The displacement constraints are

derived from . (20b) using (31). For the th displacement:

NE Nx 1i NE NDN 1 -

iumk..lkiij Pi Ai- A (102)'i xk 1 A, 1iAz

where Nx is the rLumber of redundants in {x} and N is the number of non-

supported degrees of freedom. Comparing (102) with (87), and allow-

ing for multiplication by -1 to express all constraints in a "less-than-

.*. or-equal-to" form, gives

- :NE Cl 1 - 1 0 (103)
J i. Ai
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where

Nx  -i NDN -i
+( V'j~k

C ij E- +J 2. (104)

d) Frequency Range Constraints - In order to formulate these

constraints correctly, it iu necessary to rewrite equations (20) for

free vibration. The kth fu-ndamental mode and frequency satisfies

] {xk} + 4)] {Pk} - {0}

(4,]T {xk} + ([] S [MZ]-l) {pk} _ {o} (105)

Premultiplying the first equation by {xk}T, the second equation by

{Pk , and adding, yields

1xk}T + 2 T T
f xk } + 2 { x] { P k ' + ( P k { P k }

1 Pkj ] M - 0

- {Pk }T  ~ {Pk1 - 0 . (106)

The first three terms of (106) are grouped together as a quantity fk"

Specifically,

NX Nx NX NDN
f fk E E ji (xk) j (xk)9,+ r Z (xk)  (k t;- ~J -1 11 J-1 1-1 j R, J

(107)
NDN NDN

+ E E (Pk (Pk).
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Substituting (31) into (107) yields

NE

fk 1k (108)

Ai

where

N N NDN

fk E E i(Xk)J(Xk) + E E k (Xk)(Pk)t
j l j1 9 Ii Li-

DN NDN -i (109)+ E E Q JI(%,)(P).
J-1 -i

1

The term multiplying the frequency is denoted as - Specifically,

NDN NE 1
1 E (p)2 E E $ 16 A (110)

mk 1- i-i

Although the denominator of (110) is not exactly in the form of (89),

it will be shown that it causes no problems in the formulation.

The quantity mk is certainly non-negative. Suppose the constraint

(88) is in a "less than" form, multiplying both sides by mk after

squaring (88) yields

2 ( (111)

A negative inverse operation preserves the inequality, thus

-l ~<-
2 2 (112)

Adding fk to both sides of (112) and employing (106) yields

1 (113)

50



I

or

2 " - 1 0 (114)

A "greater-than" constraint form would have the left-hand side of

(114) multiplied through by -1.

e) Constraints Relating {X) with Element Sizes - These constraints

are equations (20a). Substituting (31) into (20a) yields

NE

_ r 0 J-l, 2, N (115)Jx i=l Ai ' "'

where

N Nx DN= E-Dii -j~k Z jp (116)

kil iik k + i l i 9

Note that equations (115) are strict equalities.

It is quite possible that the structure may be subject to more

than one set of static loads. The design must satisfy the various

constraints for each of the load conditions. Additional constraints

are formed for each load condition, i.e., for each constraint dependent

on {P. Thus, additional sets of stress, displacement and equilibrium

constraints must be included for each additional load case.

The Lagrangian may now be rewritten by combining (83), (95),

(101) , (103), (114), and (115) and introducing Lagrange

multipliers p. Thus

N NE  NL  NDC NL  N

L W +AgA + Zpa + E Z VA g, + E 11Wg9W
i-i i-l j-l iml ji. i Ul

NX NL (117)
+ : P: g x

i-l J-1 51
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where NL refers to the number of load cases. For simplicity, the

LLformulation will continue with N L a 1, thus avoiding double subscripting.

From (117), the Kuhn-Tucker optimality conditions are derived. (It is

to be remembered that L is a function of {X1 as well.) Application of

these conditions yields

A- i-l, 2,..., NE (l18a)

- 0 J 1, 2, ... ,N (118b)

ax x
If lA', then g1 0 or

If I . 0, then Ai<0 i-, 2, ... , N (18c)
)'A gA E (le

I
If 0(- , then g. 0 or

If ji -0, then g1< i-ni, 2, ... , NE (118d)

If ji1 O, then gA 10 or

If then . 1-1, 2, .... N (llge)

I I
If Ui0, then .. , or

I I<If 1 , then k-O 1-1, 2, , (118f

SiO i-l, 2, ... Nx  (118g)

The left-hand side of equations (118a, b) involve first derivatives of

the constraint equations. The dependence in the element sizes for the
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constraint equations is that of (89) , except for the mk term in the

frequency constraints, and thus the first derivatives are fairly straight-

forward. For the frequency constraint,

gk

(119)

NDN 2

-- 2 Z+ ik
Rw) iI NE AA

j=1

where use has been made of (108) and (110). Note that

k NE k

SW + E agW 0 (1201

gm ; A =

j thus preserving the form (94).

The first derivatives of the constraints with respect to the

redundants must be calculated for use in (118b). Size and frequency

constraints are independent of the loading, and thus independent of

the set of redundants. (For the frequency constraints, it is important

to note the difference between {XI, the set of redundants as calculated

from the static loads, and Xk, the k th "redundant mode" of the structure

when it is in a state of free vibration.) The first derivatives of

the other constraints are calculated as follows:

a) Stress Constraints - With g , (101) , expressed as a

function of the stress parameters, the derivative with respect to X is

calculated by the chain rule as
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___ 1c yI a i.kZ (121)ax A O* as 3 X" ii k-1 i,k j

where N is the number of stress parameters for the i t h element. The
Pi

form of aYi/si,k is determined for each element. (See (96) -

(99)0. The second set of terms in the summation is calculated from

(29). Thus,

as = blk 
(122)ax lokj

b) Displacement Constraints - Noting (103) and (104),

NE -k
1 Z i (123)

c) Equilibrium Constraints - Noting (115) and (116),

agi N Ek

_Wx , E ' (124)
ax k-lA

The optimization problem is now specified explicitly in terms

of the unknown element sizes and redundante, and quantities determined

from the loading, discretization, and choice of material properties

of the elements.

2.3.3 Description of the Allorithm

Nuch of the algorithm to be described herein Is a modification

of the one developed in Reference 4 the initial force method optimi-

zation study program. 54
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The guiding principle to be applied is expressed in (94) and that equation's

implications.

Suppose a set of element sizes are chosen such that the set of

constraints (118 c-g) are satisfied. Now, such a set may be quite

difficult to find. With {X} determined by ,(118g),, top priority may then

be given to (118c) and (118d). The values for the sizes and the

redundants are used in (lla) and (l8b) to generate linear equations

in the Lagrange multipliers u. With the sum of the Lagrange multipliers

of the type in (89a) as the objective function, and ,(118 a,b) as the

constraints, a linear programming problem for the Lagrange multipliers is

formulated. The linear programming process results in a full vertex solution,

i.e., for the NE + NX equality constraints (118 a,b) , there will be pre-

cisely NE + NX non-zero valued u's in the solution. It is anticipated that

the N non-constrained (in sign) p 'S will be in this basis, thus leaving ax
total of NE from among the VA'S, lo'S, V 's and i 's. The non-zero V's

correspond to particular constraints being "on", i.e., satisfied at equality.

These constraints form a system of NE + N equations for the NE sizes and

N redundants for a new design as specified by the set of non-zero multipliers.

This linear programming phase may be initialized in one of several

ways. Firstly, initial sizes may be read from data cards; secondly, they

may be set to minimum sizes Ai* by default; thirdly, the stress ratio

method may be employed either a finite number of iterations, or until

convergence is reached. This solution is known as a fully-stressed design

(FSD) and is mathematically a full vertex solution when only size and

stress constraints are considered.

The new design as indicated by the set of non-zero P's is solved

from a system of nonlinear equations. If some of the equations are minimum
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size constraint equations, a reduction of the system may be accomplished

by setting the corresponding sizes to the minimum directly, and eliminating

these constraints. The remaining system is satisfied by employing a

Newton-Raphson procedure. If this procedure should not converge after a

specified number of iterations, the results from the last iteration are

used in (118a, b) and the linear programming process is repeated. The

entire cycle is repeated a maximum of three times.

If the linear programming process does not converge after three

iterations, an FSD design is generated. This design, or the one generated

by linear programming if that procedure converged, is used in (118a, b)

to determine values for the corresponding u's to check for their non-

negativity, and to check the remaining constraints (118c-f) for violations.

If all the U's are positive and no constraint is violated, the solution is

found. If a constraint is violated, a standard "fix-up" procedure is per-

formed which is dependent upon the particular constraint in question. For

instance, suppose a gA constraint is "on" for a given element and the result-

; ing size and set of redundants yields a stress in the element violating its

go constraint. The size is raised adequately to turn the g. "on" and the

g. "off". The reverse situation is handled in a similar manner. If a 9A

constraint is violated, all the areas are multiplied by a comuon factor in

order to satisfy it. This operation, however, turns "off" the 9A and g.

-constraints. An algorithm to "fix up" g constraints can be derived by

considering inverse mass to flexibility relationships, to find which elements

can have their sizes increased to increase the frequency without an excessive

weight penalty.

If a particular p is negative, then the corresponding constraints is

turned "off" and the multiplier is set to zero.
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The current design at this point has no more than NE + NX constraint

equations "on". These equations, plus (11a, b) form a system for the

element sizes, the redundants, and the non-zero Lagrange multipliers

associated with the constraints. A Newton-Raphson procedure is used to

solve this system. This procedure will require the calculation of second

derivatives of the constraints which are expressed explicitly as follows:

a) Minimum Size Constraints: From (95),

2 gi A*

jAk 2A 2if i-jfk; = 0 otherwise. (125)

The derivatives with respect to the redundants are identically zero.

b) Maximum Stress Constraints: From (101) it is seen that

21Y
ga 2 1i

DAa fi Al a1 * if i=j=k; = 0 otherwise. (126)

The other derivatives are calculated from (121) and (122). Thus,

21 NP ay
I

x A i i b 1i , kj if i-I; - 0 otherwise
axiAZ Ajai* k.i 'i,k 1(127)

a2 gi Np Np a2y
-a 1 i i_ Z i Ia =X a bll s 3S 1,kj bI ,m£ . (128)

a jaXt A iI* k1l ml asi,k asim

c) Displacement Constraints - From (103),

A2gDAi 2 U if J-k; - 0 otherwise (129)
a " k*
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with Cij is defined in (104); from (123),

S 1i __(130)

axJ Ak AI* A.2

and the second derivatives with respect to the redundants are zero.

d) Frequency Constraints - From (119),

S2 g~ i  = 2 NDN (Pi) 2 9,t8t92k f
2 W tkk1 EA (131)

i -r ]immAm -3

where the second term is included only if J-k. Since gW is independent

of the loading, all derivatives with respect to the redundants are zero.

e) Equilibrium Constraints - From (115),

2ii
_2____ 2 D..i  if J-k; = 0 otherwise (132)

where D is defined in (116); from (124).

a2gx _k 
(133)

aXjaAk = ij

The second derivatives with respect to redundants are zero.

Assuming a given set of equations form a system that will converge

in a Newton-Raphson procedure, the new design is checked for feasibility.

The violated constraints are "fixed-up" in the manner prescribed previously,

and those constraints with corresponding negative multipliers are turned

off. The procedure of adding and subtracting constraints from the system
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to form a new set of equations for the Newton-Raphson procedure leads

eventually to a solution.

2.4 Rapid Reanalysis

The purpose of a rapid reanalysis procedure is to analyze a damaged

structure using, as much as possible, quantities calculated in the analysis

of the original structure. Various means to accomplish this task have

been investigated by numerous researchers References 15 to 20. This

work, for the most part, has been based on the matrix displacement method

and iterative schemes. Past investigators have defined damage models by

removing structural finite elements entirely or reducing values of the

design parameters which effect the structures flexibility and mass.

J. S. Arora, in Reference 15 for example, defines the damage condition

as follows: "A damage condition for the structure is defined to consist

of complete or partial removal of selected members or parts of a structure.

Some joints of the structure may be removed as a result of damage." These

authors applied this definition to a helicopter boom design made of truss

members which was subsequently damaged due to munition blast loads occurring

inside or near the boom. Another study illustrates a different approach

to the damage question. D. S. Scott, et.al., Refere ce 16 , were concerned

with lifting surface drag due to holes in the surfaces caused by ballistic

penetrations. Their main concern was the derivation of aerodynamic loads

on surfaces containing holes and the consequent effect on aeroelastic

behavior.

The work of F. G. Hemming, et. al., References 17 and 18,

considered battle damage or initial flaw propagation by removal of entire

finite elements or by reducing the properties of the damaged elements.
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Property reduction could correspond to loss of strength due to crack

propagation for instance. In either case only a few finite elements were

used to describe the damage condition. Additional work by V. B. Venkayya, Ref-

erences 19 & 20, considered "severe damage" to a three spar - five rib delta

wing by removing two top and two bottom membrane elements and one shear

panel in the midspar. The work being accomplished by the University of

Dayton Research Institute, Dayton, Ohio, Reference 21 , also encom-

passes the type of damage models described. It was concluded from these

and Bell's studies that for the contractual requirements two damage models

can be defined; namely, Types A and B. Type A damage consists of complete

removal of finite elements due to ballistic damage for instance. Type B

damage considers the reduction of finite element properties such that

flexibility is increased. This type of damage could represent increased

flexibility due to fatigue cracks or small holes caused by ballistic

impacts.

The rapid reanalysis method developed for these two types of damage

is described below. A few introductory comments follow. Note that

previously defined force method matrices are used throughout the development.

Damage will be measured on an element by element basis, and will

i
consist of two separate measurements: dK , the "stiffness damage" to the

ith element, and dMi , the "mass damage". The numbers d K and dMi lie

between 0 and 1 inclusive, and represent a fractional decrease in load

icarrying capacity and mass, respectively. Generally, dM.~ 0 except in

iicases of physical removal of the element, in which case dM i - 1. It is

conceivable that in cases of phase change at high temperatures that dM

may lie strictly between 0 and 1, but, as will be seen, the value of
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d. will not effect the method of analysis. The value of d may have any

value in the range.

The following section describes the procedure to be used when

dKI < 1. When dK i 1, a special method must be used, and it is described

in Section 2.4.2. Finally, the residual elastic strength of the structure

is defined and discussed.

2.4.1 Small Scale Damage

Small scale damage is defined as less-than-total stiffness damage,
I

i.e., when dK < 1. The effect upon element flexibility is thus

[fid = i]/(l - dKi) (134)

where the d refers to values in the damaged state. Note that the

flexibility increases with increasing damage. The difference between the

new and old states Is

Stri] =[fid - [f] (135)

for each of the ND damaged elements.

Since the geometric layout of the elements and, for the statics

case, the loading is assumed not to change, the values of (b , (D] and

{p) remain the same. Thus, if the definitions

[Wd w [D+AO];[O]d = [ +[A0];[S1d "[Q]+[AQ] (136)

are made, then

NE iT NE NE

[A4] = Z (b1 Af4](b, ];(A,] E E [b i)T(Af ][Di];[] E [D ilT[Afi][nIl.

(137)
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In the actual numerical procedure the sumation is carried out only over

the damaged elements.

The equations of statics for the damaged case are those of (2.20),

where d subscripts would be added to all quantities used in those equa-

tions, except for {P}. If it is noted that

I x} {x + [AX) ; {A} = {-W+{(A (138)
d d

then, after subtracting (20a) for the undamaged case from (20a) of

the damaged case, {AX} may be obtained as

d'1  (1A43{x) + [A41PI}). (139)

The inverse of (f]d may pose a problem. Noting (136) and formulating

the expansion

d + (140)

d1

will avoid the costly inverse operation, since ()-l is probably obtained

in the basic analysis. The rate of convergence of (140) will likely

depend on individual d values, as well as the proportion of elements
k

affected by damage. In order to assure convergence for values of dk

above some cutoff, say, .4, a scheme is derived whereby the damage is

' "compounded" at a particular rate for a finite number of times until the

i
total, desired damage level is achieved. If ck is this compounding rate,

then
1

cki - 1 -(1 -dki) N (141)
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where N is an integral number of steps. A criteria for choosing N would
dmaxbe the minimum number of compounding steps to achieve dk , the maximum

damage level from among all the damaged elements, with a compounding rate

of less than .4. Manipulating %(141) with d k 4 yields,

N - log (l-dkmax log .6 (142)

The value N is then raised to the nearest integer and used in (141) to

determine individual compounding rates.

Let J-l iterations in the scheme be complete. The J th iteration

consists of deriving the new flexibilities

=j)  [f 30 / (1-c)k (143)

from which

-Af ]() . (ftI J) Eft]0 - 1)  (144)

is defined. As in (137) , [A](J) is defined as

NE(j) E CbT[Af i](j)bli (145)

i-1

and thus

[ j =[0](j-l) + [A4](j) (146)
•d d

Using (146) in (140) yields

it 1 . 1 - -' _ t, -1))-l CAOI( J c -1)- ,
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Equations (143) - (147) are repeated for J-l, 2, ... , N. Note that

the zeroth state is the undamaged state and the Nth state is the total damaged

state.

Returning to the basic re-analysis procedure, equations (20b) for

the undamaged state are subtracted from the corresponding equations of the

damaged state to yield

+ [A*])T{AX + [&]T{xl + [n]{p} = {(A 148)

thus solving the re-analysis problem completely. Another approach is to

find

- 1. 1d -(149)

and obtain

(p )  W. (150)

The global flexibility matrix is required when a dynamic re-analysis is

needed. For this case, the mass damage must also be specified. Its effect

is

(mi)d = I (l-d m) (151)

thus

Am, d m i. (152)

Using (152) in (48) yields

N E

AM -E a m (153)g i l gi i
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and thus

(Mizd - (MU + ti.) (154)

where [AMJ is the proper collection of terms (153). The matrix

[Q] is now formed as in %(45) with use of (154) and (149) and
d

eigenvalues and eigenvectors are now calculated. If they are found using

some iterative technique, such as the power method, the eigenvectors of

the original analysis are used as initial guesses.

2.4.2 Large Scale Damage

Large scale damage is defined as the state when at least one dk 1.

This would lead to an infinite flexibility according to (134). The

resulting computational hazards would then make the entire small scale

damage algorithm useless. Note that this is unlike the displacement method

whereby the damaged element's stiffness is simply "removed" from the global

system.

An approach is developed whereby "total loss of load carrying capacity"

is translated into "carrying no load". That is, for the i th damaged element

{si} d - {0}•
id (155)

For the collection of the totally damaged elements,

isdid - 0 (156)

where the d within the brackets denotes those stress parameters which are

to be constrained to zero. Noting that

{Sd } = (bld]{x) + CDd1{P) (157)
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equations (1) can be extended by use of Lagrange multipliers {M1 as

6e1 + 6V* + 6({XjT{Sdd) . (158)

It should be noted that not only is the geometric layout the same, and

thus [b1 ] and (D], but that the flexibilities of the damaged elements are

not affected, and thus [ ). [4' and [Q] remain the same. Taking varia-

tions with respect to {X) and {P) in (158) yields

W1 {X) d + [(]{P} + (b dT I{} {}0 (159a)

[*]T {X}- {}. (159b)

Variations with respect to the multipliers return the constraints (156)

expressed as

[bIdJ (X}d + [Dd)(P) - 01. (160)

For the static4 case, the solution method for (159) - (160) proceeds

by introducing {AX) and {AA) as in the small scale damage case. Subtract-

ing (20a) from (159a) yields

[d] {AX) + -1 d (161)

The vector (AX) is solved in terms of {M}, and used in (160) to obtain

[bldJ(x - [bld][] 'l[b d]Tx) + [DdI{P W {. (162)

Noting (157) , the multipliers are

{( - ((b4d],-l'[b 1  {Sd} (163)
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Subtracting (20b) from (159b) yields
[*]TjA} + Dd]T(X}

[D AA (164)

An alternative approach is to find Gd ] . This will lend itself readily

to adoption for dynamics. Solve (159a) for {X d substitute into

(160) to solve for {WJ and back substitute into (159b) to give the

form

[;51 {P}  {A} (165)

where

[= + ([+ ] - bld] ]b l[])T([b 1d][(]-l[bld]T -l([Dd]l-bld 11]lr l).

(166)

The procedure for determining [MIld is the same as before, as well as

the procedure for determining new modes and frequencies.

This method for large scale damage is straight forward in approach

and calculation. One difficulty that may exist involves the inverse of

the matrix product [bld] ,]-[bdlT. If the number of parameters in (S

exceeds the number of redundants, then this matrix is singular. The

physical interpretation can be either the lack of rigid body motion

constraints (as in a rectangular truss frame) or by what will be termed

+"node removal". For instance, if a rectangular plate is divided into tri-

angular elements, and the corner of the plate, represented by one triangle,

.f4 is removed, the corner node is no longer physically there. The two

equilibrium equations at that node are identically satisfied (assuming no

loads originally applied there) and should be removed from the analysis.

A generalized method to overcome this and similar difficulties is now

presented.

67



Equations (14) are partitioned as

(P} - [Au; Ad) S J (167)

where the u subscript refers to the undamaged portion of the structure.

Perform a Gauss-Jordan elimination scheme on (Au) with column as well as

row pivoting. It is quite possible (and definite, if the number of rows

of [& exceeds the number of columns) that this procedure yields the form

141L Iu 2- (168)
[Ps]

where the prime indicates that the values are transformed from the origi-al

values. The lower partition of (168) are relations strictly among the

i (d. L Note further that unless (P d' (01, a contradiction exists and

the re-analysis may not continue. Physically, this would imply that a

non-damaged truss member, say, would be required to support a transverse

applied load. This would cause a basic remodeling of the damaged structure

for analysis, and thus a rapid re-analysis cannot be done. Thus, for a

properly posed large scale damage problem, the bottom partition is

[Addo ] (Sd) - (0) * (169)

- A Gauss-Jordan elimination procedure with column pivoting is performed on

[Add'), which should have at least as many columns as rows. This yields

the form

AJ S' (0 (170)Ed-] 68



The form of (170) reveals that if (S *} - {01, then {S I {01, and
d d

thus (SdI - (0) simply by equilibrium. Thus, in general, only the

elements of IS *} need be explicitly set to zero as in (156) in order
d

to obtain the results for the desired damage case. Furthermore, if

* every element was removed, then [Add - [A], and thus (Add*) has a
dd (d*

d][f-l d Tnumber of column equal to the number of redundants, and thus [b d] [b1 d]

is the same size as

Finally, it should be noted that if some elements have d <Iand

kk! others have d,,l 1 , that a small scale analysis can be done first with

the less than totally damaged elements, and then that solution be used as

the undamaged structure for the large scale damage.

2.4.3 Residual Elastic Strength

The previous discussion has centered on the results of methods derived

r 'for the rapid reanalysis of damaged structures. Output of these methods

are such that the vulnerability of the structure can be determined, this

being defined as the ability of the structure to withstand damage as mea-

sured by residual elastic strength. This parameter will identify critical

damage areas and attendant structural loads which can cause complete failure

of the structure. The damage in a structure may, for example, be in the

* " form of a crack in a stringer extending into an adjacent sheet. For analysis

purposes the damaged portion of the structure (such as the cracked plates

and portions of the cracked stringer in our example) will be removed from

the finite element idealization and an elastic reanalysis performed. In
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general, if the structure had been optimized and the yield stress criterion

was invoked in the design, then obviously the structure is weaker when

damaged and for the applied loads for which the structure was optimized

there will be no residual strength up to the yield stress values. However,

for loads less than those used in the optimization process there may be

some residual strength remaining after damage which is proportional to the

difference between the allowable yield stress and the applied stresses.

The strength of the damaged structure will depend on the type of

damage as related to the failure mode. Thus, for statically determinant

structures damage by removal of a structural element can result in a catas-

,trophic failure. However, for a redundant structure a damaged structural

element will cause a load shift to other elements and failure will be

governed by the strength of remaining elements. It should be noted that in

a highly redundant structure maximum residual strength may depend on the

j failure of more than one structural element.

In the light of the above complexities and in an effort to estimate

the remaining strength of a damaged structure, residual elastic strength

will be taken to occur at loads which produce gross elastic stresses which

are equal to:

a) The yield stress of the material

b) Allowable stress used in the optimization cycle

c) The critical gross (nominal) catastrophic fracture stress based

on fracture mechanics concepts.

As part of the optimization process, allowable stresses of the material

are used as failure criteria in the optimum design of the structure. Using
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these already identified allowable stresses, the residual strength of the

structure corresponding to modes of failure can be obtained.

2.4.4 Computer Code & Illustrative Examples

The rapid reanalysis methodology described above was programmed into

a remote terminal interactive, (VSPC) computer code which is aptly described and

illustrated in Appendix B of Volume II - User's Manual. The reader is referred

to this volume for particular program details.

The use of this computer program is illustrated here to assess the

damage and residual elastic strength of three and ten bar truss structures.

Program input consists of the characteristics of the optimized structure and

its loading. The damage level is then expressed in terms of the previously

defined parameters di and di.
k m

Results for a three bar truss are shown on Figure 7 for four damage

levels. (Note that element one sustains the damage.) The tabular data

shows the increased stress levels each bar experiences as damage levels in-

crease. It is observed that the first element will yield under the loads

used in the optimization cycle as the damage level nears 20%. This denotes

the vulnerability of this particular structure to the imposed damage

conditions.

Figure 8 depicts a ten bar truss which was examined under a variety

of damage cases: Types A and B damage were evaluated in this instance.

This truss has been the subject of study by many investigators of weight

optimization methods but vulnerability studies have only been conducted by

Messrs. Venkaya and Khot in Reference 20. Thus, it provides a good basis

of comparison between the Force and Displacement methods of structural analysis.

Results of analyses conducted are given in Table 1. Each damage case is

given and appropriate results for that case are tabulated. Removal of the
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2 3 4

GO

K ,Ax

15,000 lbs.

d 0 .2 .4 .6

El. No. CROSS SECTIONAL AREA

1 .625 .500 .391 .250

2 .010 .010 .010 .010

3 .175 .175 .175 .175

El. Io. ELEHENT STRESS (PSI)

1 25000 31200 39749 61800

2 0 4700 12500 27970

3 -25000 -25166 -25446 -26003

AX .52 .59 .70 .92

0 -. 05 -. 13 -. 28

2
OPTIMIZATION CONSTRAINTS: Ami n  0101; all bars

01- !25,000psl; all bars

No displacement constraints

Ssin - 10.1 lbs.

TRUSS CHARACTERISTICS: 
p- .100 lb/in

3

E - 1.0 x 107 PSI

e - 36.87'

1aF:- 125.0"

100.0"

Figure 7 Three Bar Truss - Damage Assessment
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5 6
360

100K l00K

2
OPTIMIZATION CONSTRAINTS: Amin ' .loin

vr- ± 25,000 psi,

&max " 2.0 in.

TRUSS CHARACTERISTICS: p - .10 lbs/in
3

E - 1.0 x 10
, 
psi

RESULTS OF OPTIMIZATION: Wmi n - 5062 lbs.

EL. NO. AREA EL. NO. AREA

1 30.10 6 .57

2 .10 7 7.51

3 22.73 8 21.33

4 15.45 9 21.70

* 5 .10 10 .10

Figure 8 Ten Bar Truss
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TABLE 1 TEN BAR TRUSS - DAMAGE ASSESSMENT

DAMAGE
CASE dk &i max Amax CONMENI

1,1-9 0 6525 05-24970 -2.0 Not Critical

.5 13014 05.25149 -2.5 Not Critical

.1 63040 9-63040 -6.1 Structure Collapse

1.0 - 010>1.0E6 -146.4 Structure Collapse

2,1-10 1.0 - 03-25050 -1.99 Not Critical

3,1-7 1.0 - 05-800,000 -30.0 Structure Collapse

4,1-6 1.0 - a5-25050 -1.63 Not Critical

i - Damaged Bar Element Number

a in pounds per square inch

a G In Inches

Amax - Displacement of Structure

amaxj* Max. Stress Occurs in jth Element
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ninth element, indicated by i-9, produces a condition of complete collapse of the

structure as evidenced by a maximum displacement of 146.4 in. and stress levels

exceeding one million pounds per square inch. It must be noted that this

result is in agreement with Reference 20 and unlike the reanalysis method

used in that reference no iteration procedure is used, The additional

conditions tabulated illustrate the vulnerability of the truss to damage

and demonstrates the importance of finding those members which cause the
entire structure to fail. Conditions such as these permit definition of

residual strength levels.

Figure 9 displays the approach to determining the elastic residual

strength of the three bar truss through use of the method discussed above.

The stresses in each element of the optimized truss were limited to ±25,000

1.
psi. Assuming that a 60% damage level (d = 6 ) will be sustained by the

first element then the maximum load that the damaged truss can accommodate

is P =.40P , where P is the loading that the optimized structure was designed
d o o

to. In this instance the residual elastic strength level is 40%.
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.6

.4
3-- .2 0

2-

0 .2 .4 .6 .8 1.0

Pd/P
0

3- .6
z

o 2

0 0
0 .2 .4 .'6 .8 1.0

zp
ed/P

.6,0

-2

0

0 .2 .4 .6 .8 1.0

P d/P
o 0

Figure 9 Three Bar Truss - Residual Strength
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3.0OPTFORCE II PROGRAM

3.1 Efficiency Studies

Task VI of the work effort required that the efficiency of the force

method optimization program, OPTFORCE II, be compared with an existing dis-

placement method optimization program OPTIM III (Ref. 10). Much of the

optimization literature in which solution methods are compared report the

number of analyses required, apparently using this as a measure of effi-

ciency of the method being discussed. This may be a valid measure of

efficiency, but it appears to be dependent on specific machine capability.

For example, if only a few analyses are required but each analysis is

rather complex, requiring somewhat more computer time, this method would

appear to be more efficient on the basis of number of analyses required

than a method requiring many analyses, each of very short duration. On

the other hand, using computer time (seconds) as a measure of efficiency

requires that the problems to be used for comparison be exercised on the

same computer system to avoid faster or slower machine influences. The

efficiency studies discussed herein were based on computer time but due

note was taken of the number iteration cycles as well. Each of the problems

were solved either on Bell's IBM 3031 or IBM 3033 computer and the time

recorded is the cpu computer time, in seconds, to optimize the structure.

It became very evident, as the study progressed and structural

optimization problems were solved, that different design variable popula-

tions were obtained for the same minimum weight value using both of the

above computer codes and other reference material. Thus, the "efficiency"

studies were expanded to include program accuracy as well. The "accuracy"

of a particular optimization code was gauge4 by how well it predicts the
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true minimum weight solution. The measure used to accomplish this task

was the agreement obtained between different codes and known analytical

solutions. The ensuing discussion considers each of the above elements to

assess the efficiency of the OPTFORCE II code. Three structures were

optimized and are discussed below in turn.

3.1.1 Seventeen Bar Truss

The configuration of the seventeen bar truss is given in Figure 10

with two external loading cases; each load is applied simultaneously, they

are not considered as multiple load cases. Material properties and con-

straints for each loading case are given in Table 2. Only stress and

minimum size constraints were considered. The OPTFORCE II NASTRAN compatible

input data for this structure is displayed in Figure 11 for Case 2. The

OPTIM III input data file is essentially identical to those data shown in

Figure 11.

Case I results using OPTFORCE ii and OPTIM III optimization programs

are displayed in Table 3 and Figure 12. Data from Drs. Khot and Berke's

research, Reference 22, are also included for comparative purposes. Their

solution procedures are based on the use of two algorithms. The first

algorithm is a recurrence relation based on the fully stressed design

(FSD: criterion and the second algorithm uses a recurrence relationship

based on equivalent displacement constraints. Examination of the results

shows the excellent agreement obtained among the methods used. Note that

OPTIM III and Ihot and Berke's methods are "displacement" based whereas

OPTFORCE II is "force" based. Of particular interest is the initial weight

value, Wi, and number of iterations, 1, comparisons. This particular

application of OPTFORCE II used the stress ratio option to arrive at an

initial guess for the design variable vector. This procedure yielded
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2 5 9 8

100.0"

x
i13 5 1 7 14

100oo.0,, - 1o.0,, 10.0, T -10000.0 .

Case Grid Point Axis Load

1 9 +Y -00000.0 bs.

2 3,5,7,9 +Y -100000.0 lbs.

Il

Figure 10 Seventeen Bar Truss
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TABLE 2 MATERIAL PROPERTIES & CONSTRAINTS - SEVENTEEN BAR TRUSS

(1) Material Properties

Aluminum:

E - 30xlO 6 psi

* p - .268 lbs. per cubic inch

v .30

(2) Minimum size (size constraints)

Bar element area - .10 in
2

(3) Allowable stress (stress constraints)

Case 1:

a1 W -50000.0 psi, au 50000.0 psi all elements

Case 2:

01 = -50000.0 psi, a - 50000.0 psi all elements
except No. 2, 6, 10

1 = -125,000.0 psi, ou = 125,000.0 psi elements
No2,6, 10

5-0*1*

* 80.. . . . . .



10 TITLE
11 SEVENTEEN BAR TRUSS-FOUR LOADM
20 GRID 1 0.0 0.0 0.0 123
30 GRID 2 0.0 100.0 0.0 123
40 GRID 3 100.0 0.0 0.0 3)
50 GRID 4 100.0 100.0 0.0 360 GRID 5 200.0 0.0 0.0 3
70 GRID 6 200.0 100.0 0.0 3
80 GRID 7 300.0 0.0 0.0 3
90 GRID a 300.0 100.0 0.0 * 3

100 GRID 9 400.0 0.0 0.0 3110 OPLOADS 1 1
150 OPTIN YES NO YES OPT
160 FORCE 1 3 1.0+5 0.0 -1.0 0.0170 FORCE 1 5 1.0+5 0.0 -1.0 0.0
180 FORCE 1 7 1.0+5 0.0 -1.0 0.0
190 FORCE 1 9 1.0+5 0.0 -1.0 0.0
200 CONROD 1 2 4 1 0.10 0 0 0210 CONROD 2 2 3 2 0.10 0 0 0
220 CONROD 3 1 3 1 0.10 0 0 0
23o CONRoD 4 3 4 1 0.10 0 0 0
240OCONROD 5 4 6 1 0.10 0 0 025 CONROD6 4 5 3 0.10 0 0 0
260 CONROD270 CONROD 8 5 1 1 0lU.1
200 CONROD 11 a 1 0.10 0 0 0
310 CONROD 10 7 7 4 0.10 0 0 0
300CONROD 13 8 7 1 0.10 0 0 0
310 CONROD 12 7 9 1 0.10 0 0 0320 CONROD 13 a 9 1 0.10 0 0 0
330 CONROD 14 9 1 0.10 0 0 0
340 CONROD 15 1 4 1 0.10 0 0 0350 CONROD 16 3 6 1 0.10 0 0 0
360 CONROD 17 5 8 1 0.10 0 0 0
370 MATI 1 30.46 0.3 0.268 1MATA
380 *MATA -5.0+4 +5.0+4
390 AT1 2 30.46 0.3 0.268 +M4ATS
400 +NAT9 -12.544 +12.5+4
410 KATI 3 30.+6 0.3 0.268 +/IAIC
420 +HATC -12.5+4 +12.5+4
430 HAT1 4 30.46 0.3 0.268 +MATD
440 *MATD -12.5+4 +12.5+4
450 ENDDATA

Fiugre 11 Optforce II Input Data - Seventeen Bar Truss, Case 2

81



'.4
C-4 CL o

'-) 'a >

Id M_______NO___ M___ m___ A C-0 I

0: 0.1 ' -t9- I'

0 C0r-4 In M- (%.4 0 C-4 C4 C~.4

CA 00O400 C;~ C; NN '

S.'4
'- 4 4

0.

-- 0%~ 04 P - 00r 4r

Eam )C4 0%00 -

O008000 %000000

a % -4 ONOQO0%0-4Q.0000 '
w n-4 Ln I uLiIP Ln Ul MMa 4$ nI Tt 0 W

1 1 1 1 1 1 1 a.0 0

0 m4 .4 1-4

0%~~ ~ ~ ~ r4 0% "0a'4G 0r 4

,4 C04. LA A * CO C4 0&A 4 -4

4 4 - 44 4 -4U -

82



cn- -4~~
toar u c

icl

-41-4

-a)
U N P~U

4-4 ~-to
o~u~ ~fuF. II

4-4d

znt

-- 4

E-44

pl.,

(SRI JA

83--



€I

W, a 1315.75 Ibs, a value very near the minimum weight value of Wi1295.49 lbs.

Observe that this is not the case for the other computer codes shown. The

OPTIM III code does not have this capability and uses the minimum values of

the design variables as the initial guess. The OPTFORCE II code yielded

the optimum weight solution in one iteration (Linear Programming Phase)

whereas the other methods required 30 to 36 iterations. Computer time

recorded shows that the OPTFORCE II code requires 6.55 more cpu seconds then

the OPTIM III code. The inset on Figure 12 indicates that a solution is

not feasible in the Linear Programming phase. A non-feasible solution

violates at least one of the constraints. For a given problem, it is pos-

sible that no feasible solutions exist. Conversely, a feasible solution is

any solution of the constraint equations.

Case 2 results are shown in Table 4 and Figure 13. No agreement

is obtained between the OPTFORCE II and OPTIM III codes, however, agreement

occurs between OPTFORCE II and Reference 22 solutions. It is discussed in

that reference that the FSD algorithm yielded a "minimum weight" design of

3081.62 lbs. which is the same design obtained using the OPTIM III code. As

discussed in Reference 22 this solution is a non-optimum design and is not

the correct one. It was further shown in Reference 22 that the equivalent

displacement algorithm yielded the optimum design, it being of weight

equal to 2460.24 lbs. Thus as seen the correct distribution of areas and

weight for the optimum design were obtained by the OPTFOPCE II code and

not the OPTIM III code. Note that the stress distribution for all three

methods shown are identical which illustrates that there can be more than

one design with tl.e same stress distribution but different weights. This,

of course, was also observed and quoted in Reference 22. Computer time
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displayed in Table 4 again shows that the force method incurs additional

solution time but requires one-sixth the number of iterations.

3.1.2 Four Bar Pyramid

Figure 14 displays the geometrical configuration of the four bar

pyramid. The external loading applied to this structure is also shown.

This loading system is not considered as a multiple load case; rather each

of the loads are applied to the structure simultaneously. Material proper-

ties and constraints are listed in Table 5. Only stress and minimum size

constraints were considered. OPTFORCE II input data is displayed in

Figure 15; OPTIM III data is essentially identical to thaz shown in that

figure. Analyses results are given in Tables 6 and 7 and Figures 16

and 17.

Three cases were considered differing only in the value of the

minimum size constraints. The minimum weight for these cases was calcu-

lated to be 65.76 lbs.; the value accepted as the optimum by various

investigators. Displacement and stress values obtained were identical

for all cases displayed, however distinctly different designs are evident

as shown by the values of the areas obtained. Case 1, OPTFORCE II analysis,

starts with an initial guess vector for the design variables based on the

stress ratio method which yielded the area vector (.43, 1.76, 1.26, .55).

This vector was subsequently revised through use of the Linear Programming

subroutine to that shown in Table 6 and Figure 16. Identical results

were obtained to those shown when the stress ratio option was not exercised.

Note, however, the additional computer time and iterations needed. Figure

16 aptly portrays these results. OPTIM IllI code computations converged to

the area vector (.43, 1.76, 1.26, .55) a result obtained by Gellatly,

(Reference 23), and Venkayya (Reference 24) using Amin. 0.0 in 2 . Reduction
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Figure 14 Four Bar Pyramid
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TABLE 5 MATERIAL PROPERTIES & CONSTRAINTS -FOUR BAR PYRAMID

(1) Material Properties

Aluminum:

E - 10.0 x 106 psi

P- .10 lbs. per cubic inch

v - .30

(2) Minimum size (size constraint)

Rod element area:

Case 1, A -.20 in2
Case 2, A - .10 in 2

Case 3, A - .00010 in2

(3) Allowable stress (stresconstraints)

a lower -25000.0 psi; a upper -25000.0 psi
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10 TITLE
20 FOUR BAR PRYAMID
30 GRID 1 0.0 0.0 0.0

40 GRID 2 204.0 0.0 0.0

50 GRID 3 204.0 192.0 0.0

60 GRID 4 0.0 192.0 0.0

70 GRID 5 60.0 120.0 96.0

BO SPCI 1 123 1 2 3 4

90 OPTIM NO NO YES 0 OPT

J 100 OPLOADS I 1

110 FORCE 1 5 10000.0 1.0 2.0 -6.0

143 CONROD 1 1 5 1 .20 0 0 0

150 CONROD 2 4 5 1 .20 0 0 0

160 CONROD 3 3 5 1 .20 0 0 0

170 CONROD 4 2 5 1 .20 0 0 0

180 MAT1 1 10.0+6 .30 .10 MAT

190 +MAT -25000.025000.0
200 ENDDATA

I

Figure 15 Optforce Il Input Data - Four Bar Pyramid, Case 1
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TABLE 6 FOUR BAR PYRAMID - CASES 1 & 2

Case 1A - .20 in 2

El. OPTPORCE II OPTI III
No. Area(in2) Stress(psi) Area(in2) Stress(psi)

1 .70 -25000.0 .43 -25000.0

2 1.53 -25000.0 1.76 -25000.0
3 1.57 -25000.0 1.26 -25000.0
4 .20 -25000.0 .55 -25000.0

Wi 65.76/13.94* lbs. 122.35 lbs.

W 65.76 lbs. 65.76 lbs.
m

X5 .21 in. .21 in.

YS -.12 in. -.12 in.

Zs -.69 in. -.69 in.

CPU 6.30/23.54* sec. 2.46 sec.

1 4/25* 3

Stress ratio option not used for initial quess.

Case 2 Ami n  .10 in2

El. OPTFORCE II OPTIM III
No. Area(in 2) Stress(psi) Area(in 2) Stress(psi)

1 .78 -25000.0 .43 -25000.0

2 1.47 -25000.0 1.75 -25000.0
3 1.66 -25000.0 1.26 -25000.0
4 .10 -25000.0 .55 -25000.0

Wi 65.76 lbs. 122.35 lbs.

w 65.76 lbs. 65.76 lbs.m

X5 .21 in. .21 in.

Y5  -.12 in. -.12 in.

Z5 -.69 in. -.69 in.

CPU 6.71 sec. 2.40 sec.

5 3
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TABLE 7 FOUR BAR PYRAMID - CASES 3-5

Case 3 A 51n " .0001 in 2

OPTFORCE IT OPTIM III
Area(in2) Stress(poi) Area(In2 ) Stress(psl)

.86 -25000.0 .43 -25000.0

1.41 -25000.0 1.76 -25000.0

1.75 -25000.0 1.26 -25000.0

.0001 -25000.0 .55 -25000.0

• , 65.76 lbs. 122.35 lbs.

I H 65.76 lbs. 65.76 lbs.

X5 .21 in. .21 in.

Y5 -.12 in. -.12 in.

ZS -.69 in. -.69 in.

CPU 9.72 sec. 3.29 sec.

1 5 4

Case 4, Ain - 0.0 in2 Case 5, Ai - .0001 in 2

El. Gellatly (Ref. 23)
No. Venkayya (Ref. 24) Harless (Ref. 25)

1 .43 in2  .0316 in
2

2 1.76 2.0790

3 1.26 .8055
4 .55 1.0560

W 1 122.35 lbs. -

Wa 65.76 lbs. 65.76 lbs.
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OPTFORCE It SOLUTIONS

*INITIAL QUESS -STRESS RATIO 9 INITIAL QURtSS H IM. SIZES W-13.94 LBS.
METIKD USING HIM. SIZES, W-65.76 LBS.

*ENTER LINEAR PROGRAMMING ITER NO. 1 * ENTER LIN' kROGRANKING, [TER. MDN. I

SOLUTION IS FEASIBLE. DESIGN CONVIRGED SOLUTION IS FEASIBLE. DESIGN CONVERGED
IN PARTIAL NmflON-RAFNSOU IN PARTIAL NEUTON-EAPUSON.

* +
*LAGRANGE MULTIPLIER CHECK: ALL X' *S * LAGRANGE MULTIPLIER CHEMi: NEGATIVE A~'S

POSITIVE USE DESIGN FROM LINEAR ENTER FULL N-R.
PROGRMMING. +

o DESIGN CONVERGED IN FULL N-I.

160

140
OPTIN I11, W -65.76 LIS.

120-

OPTIFORCE 11 (WI1TH STRESS RATIO).

100- W .65.16 LIS,

OPTPORCE 11 (NO STRESS RATIO). W.65.76 LBS.

40

20-

FULL NEWON-RAPMSON

1 1 3 5 7 9 11 13 is 17 19 21 23 25 27

NO. ITERAT IONS

figuare 16 Youar Bar Pyramid -Case I A,11i
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OPTFORCE II SOLUTIONS
* INITIAL QUESS - STRESS RATIO
METHOD USING MIN. SIZES,
W-65.76 LBS.

. ENTER LINEAR PROGRAiMING,
ITER NO. 1. SOLUTION IS
FEASIBLE. DESIGNED CONVERGED
IN PARTIAL NEWTON-RAPHSON.

+

9 LAGRANGE MULTIPLIER CHECK:
ALL X'S POSITIVE. USE DESIGN
FROM LINEAR PROGRAMMING.

CASE 2, A n. lOIN2  CASE 3, Am-.OOIN

140-

OPTIM III OPTIM III
120 -W-65.76 LBS. W -65.76 LBS.I 100
80-

600

40 W -65.76 LBS. W -65.76 LBS.* 3

* 20

• 0 - a , a J I I

NO. ITERATIONS NO. ITERATIONS

Fiaure 17 Four Bar Pyramid - Cases 2 & 3
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I2
of the minimum area constraint to .10 in2 gave the results tabulated for

Case 2 in Table 6 and Figure 17. In this instance OPTFORCE II computa-

tions yielded the vector (.78, 1.47, 1.66, .10) and OPTIM III again

yielded the vector (.43, 1.75, 1.26, .55). Further reduction of the area

constraint to .0001 in2 yielded the area vectors listed under Case 2,

Table 7 and Figure 17.

Perusal of the above results suggests that multiple sets of design

variables satisfy the minimum weight state. Such is the case in this

instance as thoroughly discussed by Gellatly and Venkayya. Their results

are shown under Case 4, Table 7. Further work done by Venkayya shoved

that multiple minima exist for the structure under consideration. He

states that "the design weight of 65.76 lbs. appears to be the absolute

minimum for this structure and there are three designs having the minimum

weight. The other two may be considered relative minimums". The design

vectors listed in Reference 24, for Amin - 0.0 in 2, are (0.0, 2.105, .770,

1.097) (.859, 1.406, 1.746, 0.0) and (.430, 1.755, 1.258, .548) with the

latter associated with the absolute minimum weight listed in Table 7

Comparison of these area vectors with those tabulated shows that the

OPTIM III solutions, regardless of the minimum size constraint value,

agrees with the absolute minimum solutions of Gellatly and Venkayya using

Amin - 0.0. The OPTFORCE II solution procedure tends to one of the relative

minimums as the minimum size constraint vanishes which thoroughly agrees

with the results obtained by the above two investigators. Thus, it is

concluded that OPTFORCE II yields the correct optimal solution for Case 1;

the initial design problem. Note that Harless, Reference 25, obtains

yet another solution. This solution listed in Table 7 is very close

to one of the relative minimums obtained by Venkayya. Examination of
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Tables 6 and 7 shows that OPTFORCE II requires more cpu seconds than

that required for OPTIM III for nearly the same number of solution Itera-

tions. What is most interesting, as was observed in the seventeen bar

truss solutions, is that the initial weight values, W,, used in the

OPTFORCE II code are very close to the optimum weight W . This is notU

the situation with the other reference computer codes. Thus, the initial

guess using the optional stress-ratio method is definitely an asset to the

User and as demonstrated in Case 1 its use reduces computer cpu time and

the number of iteration cycles required.

3.1.3 Wingbox

The configuration of the eighteen element wingbox is given in

Figure 18 with the location of the single external load. Material proper-

ties and problem constraints are listed in Table 8; only minimum size

and stress constraints were considered. Figure 19 displays OPTFORCE II

input data. The OPTIM III input data file Is essentially the same at

that shown in Figure 19.

Results of the analyses conducted are displayed in Table 9 and

Figure 20. Examination of these results shows that the minimum weights

obtained are relatively close to one another with the OPTFORCE 11 code

yielding a weight nearly 102 less than that calculated using the OPTIM III

code. The displacement characteristics obtained from both codes were

essentially identical. Viewing the design variable vector shows that

two different designs were obtained. The most radical departure between

these designs appears in the rod and web finite elements aligned with

the applied force (elements 4, 5, 6, 10, 11 and 12). The quadrilateral

membrane elements also exhibit the same behavior. This disagreement is

attributed to two factors; namely, 1) difference in optimization solution
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TABLE 8 MATERIAL PROPERTIES & CONSTRAINTS - WINGBOX

(1) Material Properties

E - 10.0 x 106 psi

p - .10 lbs. per cubic inch

V - .30

(2) Minimum size (size constraints)

Bar element area - .10 in 2

Web element thickness - .02 in
Membrane element thickness - .02 in

(3) Allowable stresses (stress constraint)

1 -10000.0 psi, a u 10000.0 psi
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, I(;0 III LLZ

:0 iG(HT [N E1LE[IIN'T W INIjLIIX

30 O Il .1 0. 0.0 16..0
40 GRID , O0o. 0.0 0

60 bUkID 4 100. 70.0 '11.1
70 (iRI , 0, 140.o0 tO.o
80 GRID. 6 100. 140.0 0.0
90 GRID 7 0. 190.0 10.0

100 GRID H OO. 190.0 1.1.0
I10 sFct 1 123 1 I HIi
120 OPI ii Ni NIO YES it'

13s OPLOADS 1 10
140 IORCE 10 8 5000.0 0.0 0.0 1.0
150 CIJNRDII 1 1 ' M!. 0.101
160 CUNRG0 2 3 5 20 0. 10
170 ILONROJ 3 5 203 0.10
180 CONI OD 4 2 4 2V 0.10
190 CIONIUD S 4 6 Al 0.10
200 CONROD 6 6 a 28 0.11
210 CWEB 7 50 A 4

CE220 8WD 50 5 6
230 CWFB 9 50 7 ti
"40 CtWEB 10 50 2 4
250 OWEB 11 50 4 6
1!60 CUED* 1: 50 6 8
1/0 OWEN 13 50 1 .5
280 CWEB 14 50 3 5
290 (wEI 1. ,0 , 7
300 t:UiIMLhI 16, 3.5 2 4 3 1
310 CO1MiE1 17 33 4 6 5 3
320 CODMEMI 18 33 6 7 5
330 "ATI1 28 1.0./ .30 .1 I'I
340 +CD -1.OE4 1.O.4
350 PULP 50 28 .02
.360 POLBMEht 33 21 .02
370 ENDIATA

* Figure 19 Optforce II Input Data - Wingbox
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TABLE 9 WINGBOX RESULTS

El. Element OPTFORCE 11 OPTIM I11
No. Type A * Stress(psi) Ai* Stress(psi)

1 Rod .1000 -9897.0 .2404 -7996.0

2 Rod .1000 -7684.0 .1010 -6073.0
3 Rod .1000 -1274.0 .1010 -217g.0
4 Rod 4.5500 -10000.0 .3437 -8927.0

5 Rod 2.1060 -10000.0 .1446 -8349.0
6 Rod .2527 -10000.0 .1010 -6224.0
7 Web .0200 -1590.0 .0202 -1446.0

8 Web .0200 -731.0 .0202 2321.0
9 Web .0200 5018.0 .0202 8052.0

10 Web .0966 5774.0 .0449 9896.0
11 Web .0897 5774.0 .0420 9903.0
12 Web .0865 5774.0 .0466 9918.0

13 Web .0200 2157.0 .0202 5714.0
14 Web .0200 3429.0 .0202 6639.0
15 Web .0200 4014.0 .0202 5153.0

16 Quad .0434 9999.0+ .0931 8735.0+
17 Quad .0326 10000.0+ .0643 8568.0+
18 Quad .0211 10000.0+ .0303 8496.0+

W 136.64 lbs. 234.69 lbs.

W 135.96 lbs. 148.15 lbs.
U

Ze 2.54 in. 2.42 in.

CPU 19.96 sec.** .96 sec.**

1 14 6

A, Design variable value, rod cross-sectional area (in 2),
web thickness (in.), quad. membrane thickness (in.)

A* eIBM 3033

+ Mises-Henchy stress criteria shown.
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procedure, e.g. "force" method versus "displacement" method and 2) possible

finite element formulations. As noted in the discussions of the seventeen

bar truss and four bar pyramid solutions the OPTFORCE II code appears to

be the more accurate one when the weight optimization option is exercised.

This fact is particularly emphasized when the statics option was used.

Results of this exercise demonstrated that both codes yielded nearly ident-

ical values of the displacement, stress and reaction vectors. Cpu times

recorded for the statics case were .88 sec using OPTFORCE II and .68 sec.

for OPTIM III a negligible difference. The stresses displayed in Table 9

are the element stresses themselves with exception of those given for the

quadrilateral membrane elements. Three element stresses are calculated

(ax, ay, Txy) for these elements and these have been combined using the

Mises-Henchy stress failure criteria for the sake of brevity and comparison.

Computer time recorded shows that OPTFORCE II used 19.96 sec. of cpu

time versus .96 sec. for OPTIM III solutions on the IBM 3033 computer. The

number of iterations required for OPTFORCE II are greater than those shown

for OPTIM III. Examination of Figure 20 and the computer output shows

that the minimum weight value obtained from OPTFORCE II has converged in

less than the number of iterations shown (successive weight values only

differing in the second or third decimal place). Additional iterations

were required to obtain convergence of the design variable values. This

was observed to be case in other applications of the subject computer codes.

3.1.4 Concluding Remarks

The above discussions clearly illustrate the fact that there can be

more than one design with the same stress distribution and minimum weight

but different design variable values or so-called area vectors. It

appearq that this fact, the accuracy component of the efficiency study,
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is the driving force behind optimization computer code selection rather

than computer time and/or the number of iterations required. The OPTFORCE

II code not only yields the correct minimum structural weight but the

correct design variable population. This conclusion cannot be over-

emphasized to the potential structural designer. Computer time is begin-

ning to have less relevance as a measure of computer code efficiency than

in the past due to the higher speeds attained with the newer machines.

Several of the solutions discussed in this section were re-run using Bell's

more recently acquired IBM 3033 computer. Identical minimum weight solutions

were obtained using both OPTFORCE I and OPTIM III codes at approximately

one-fifth the original cpu times quoted using the IBM 3031 machine. It is

concluded from these facts and the discussions of minimum weight solutions

that the OPTFORCE II code is more "efficient" than the reference OPTIM ITT

code.

3.2 Applications

The development of the structural optimization technique using the

force method, which has been amply described in Section 2.0, is further

illustrated below using the swept wing-box idealization shown in Figure

21. Two material cases were chosen; namely, Case 1 an all-aluminum

structure and Case 2 a graphite/epoxy-aluminum structure. Vertical loads

are applied at grid points 4, 7, and 10 and are considered as a single

load case.

Case 1 idealization consists of modeling the upper skins with

quadrilateral finite elements whereas the spars and ribs are modeled

using the symmetric shear panel elements. Spar and rib caps are idealized

using rod finite elements. It is noted that only one-half of the wing-box

structure needed to be modeled by virtue of the geometric symmetry of the
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Figure 21 Swept Wingbox Configuration
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structure and use of the symmetric shear panel element. As a result, only

six quadrilateral membrane, fifteen shear panel and fifteen rod finite

elements are used to idealize the entire wing-box yielding a total of

thirty-six elements. Twenty-seven degrees-of-freedom describe the struc-

tural behavior. The design variables are quadrilateral membrane thickness

(t ), rod cross-sectional area (A) and shear web thickness (t ); thirty-m w
six in number. Material properties; minimum sizes of design variables

and allowable stress levels are given in Table 10. NASTRAN compatible

input for this structure is displayed in Figure 22.

Case 2 idealization consisted of again modeling the upper skins

tusing quadrilateral membrane elements. However, in this case, the skins

consisted of four layers of elements containing common grid points. Each

of the layers contain a different fiber orientation in the graphite/epoxy

material. The spars, ribs, and caps were modeled as in the Case 1 structure.

A total of fifty-four elements and twenty-seven degrees-of-freedom results

from this idealization. The number of design variables increased from

thirty-six to sixty-four due to the layered quadrilateral membrane elements.

Table 11 lists material properties, minimum sizes constraints and fiber

orientation. The NASTRAN compatible input data is displayed in Figure 23.

Results of Case 1 analysis reside in Table 12 and Figure 24.

The solution procedure path followed in OPTFORCE II is depicted below:

* Initial guess for design variable vector: Minimum size constraint

with the stress ratio option, W, W 107.40 lbs.

0 Program entered the Linear Programming phase: "*Solution Not
Feasible"; Use fully stressed design (FSD) as minimum weight

solution. W 110.73 lbs.
FSD

• Performed check on the Lagrange multiplier (A ) calculations
which used the design variable vector from FS. Since all
A i0 the optimization routine terminated with the FSD. Note

that in this application there are thirty-six I's associated
with the design variables, thirty-six A's associated with
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TABLE 10 MATERIAL PROPERTIES & CONSTRAINTS - CASE 1 SWEPT WINGBOX

(1) Material Properties:'

Aluminum:

E - 10.6 x 106 psi

p - .10 lbs/in
s

v - .25

(2) Minimum sizes (size constraints)

Quadrilateral membranes ta a .10 in.

Rods A - .05 in.

Shear webs t w - .05 in.

(3) Allowable stresses (stress constraints)

iower = -30,000.0 psi, aupper = 30,000 psi

- 1
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to TIrLE
20 TASK V &INGIOXC .0 0..0TL.
30 GRID 1 0.0 0.0 2.0
40 GRID 2 40.0 0.0 3.0

50 GRID 3 90.0 0.0 2.0

60 GRID 4 23.32 50.0 1.67

70 GRID 5 53.40 50.0 2.5

so GRID 6 88.82 50.0 1.67

90 GRID 7 46.63 100.0 1.33

10 GRID 9 66.79 100.0 2.0

110 GRID 9 97.63 100.0 1.33

120 GRID 10 69.95 150.0 1.0

130 GRID 11 80.19 150.0 1.5

140 GRID 12 106.45 150.0 1.0

150 SPCI 1 123 1 THRU 3

160 OPLOADS 1 1

170 FORCE 1 4 6000.0 0.0 0.0 1.0

180 FORCE 1 7 4000.0 0.0 0.0 1.0

190 FORCE 1 10 2000.0 0.0 0.0 1.0

200 OPTIN YES NO YES OPT

210 CONEM1 I 1 2 5 4 1

220 CGEN1 2 1 3 6 5 2

230 CODEM1 3 1 5 a 7 4

240 CODNEN1 4 1 6 9 a 5

250 CODEMI 5 1 a 11 10 7

260 CODHE1 6 1 9 12 11 8

270 CUED 7 * 1 1 4

20 CUED a 1 4 7
290 CUED 9 1 7 10
300 CUED 10 1 2 5
310 CUED 11 1 5 a
320 CUED 12 1 a 11
330 CUED 13 1 3 6

340 CUED 14 1 6 9
350 CUED 15 1 9 12
360 CUED 16 1 5 4
370 CUED 17 1 6 5

380 CUED 19 1 a 7
390 CUED 19 1 9 a
400 CUED 20 1 11 10
410 CUED 21 1 12 11
420 CROD 22 1 1 4

430 CROD 23 1 4 7

440 CR0D 24 1 7 10
450 CROD 25 1 2 5

460 CROD 26 1 5 9
470 CROD 27 1 a 11
480 CROD 28 1 3 6

490 CROD 29 1 6 9
500 CROD 30 1 9 12
510 CROD 31 1 5 4

520 CROD 32 1 6 5
530 CROD 33 1 9 7
540 CROD 34 1 9 a

550 LRKOD 35 1 11 10
560 CROD 36 1 12 11

570 PUDJMNE 1 1 .10
580 PMED 1 1 .05
590 PROD 1 1 .05

600 MATI 1 10.5+6 .25 .10 N

610 +M -30000.030000.0

Figure 22 Optforce I Input Data - Case 1 Svept Wingboz

107



TABLE 11 MATERIAL PROPERTIES ICONSTRAINTS - CASE 2 SWEPT WINGBOX

(1) Material Properties:

Aluminum: E - 10.5 x 106 psi, v - .30, p - .10 lbs/in3

Graphite/Epoxy: El - 18.5 x 106 psi, E22 - 1.6 x 106 psi
G - .65 x 106 psi, Vi2 - .208, V21 - .0203
p - .055 lbs/in3

(2) Minimum sizes (size constraints)

Quadrilateral membranes t - .025 in.
Rods Am- .05 in 2

Shear webs t - .050 in
w

(3) Allowable stresses (stress constraints)

Aluminum a = -30000.0 psi, a - 30000.0 psi
lower upper

Graphite/Epoxy 0 lower a -110000.0 psi, aupper - 110000 psi

(4) Fiber orientation

Layer No. 1 (top) 0 - 0
Layer No. 2 0 - 450 0
Layer No. 3 0 - 450
Layer No. 4 (bottom) 0 - 90
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1o TITLE
20 TASAU V MGoKZ GR*IIC/EPOXY 0, ALUMINUM
30 G11D 1 0.0 0.0 2.0
40 GRJD 2 40.0 0.0 3.0

50 GRID 3 60.0 0.0 2.0
60 Gki 4 23.32 50.0 1.67
70 GRID S Z3.40 50.0 2.5
80 Skt1 6 66.02 50.0 1.67
90 GRID 7 46.63 100.0 1.33

100 GRID a 66.79 100.0 2.0
110 G.ID v 97.63 100.0 1.33
120 GRID 10 69.95 150.0 1.0

130 GRID 11 60.19 150.0 1.5
140 GRID 12 106.45 150.0 1.0
1SO SPCI 1 123 1 TIRU 3

1.0 GRLOA'S 1 1
170 FORCL 1 4 6000.0 0.0 0.0 1.0
180 rORCL 1 7 4000.4 0.0 0.0 1.0

,;190 FORCE 1 10 2000.0 0.0 0.0 1.0

200 O011ft 111 No YE 0 s0 .01 .01 (If.
210 CO MI 1 2 2 5 4 1 0.0

220 CQWLM1 37 2 2 5 4 1 45.0
230 COOMnIl 43 2 2 5 4 1 315.0
240 COW"If1 49 2 2 5 4 1 90.0

250 CGIMESI 2 2 3 6 5 2 M4.0
260 CUIhdk1 38 2 3 6 5 2 40.0
270 C GmL t 44 2 3 6 5 2 310.0

2U8. DMEM L 0 2 3 6 5 2 65.0
290 COlLawl 3 2 5 a 7 4 0.0
300 COIM1an£ 39 2 5 a 7 4 45.0
JI CQODfLHI 45 2 5 a 7 4 315.0
J20 CaDhLMI 51 2 5 8 7 4 90.0
330 CG1ohLAI 4 2 6 9 8 5 355.0
340 CDKM1 40 2 6 9 a 5 40.0
3%0 CQDnLMI 46 2 6 9 8 5 310.0
360 CUJihLI 52 2 6 9 8 5 85.0

370 CObiLil n 2 a 11 10 7 0.0
30 COIfLf 41 2 6 11 10 7 45.0
390 CO[LMLM 47 2 U 11 10 7 315.0
400 C0bo1m 53 2 6 11 10 7 90.0
410 CO 1DI 6 2 9 12 11 a 355.0
420 CGILml 42 2 9 12 11 6 40.0
430 CODMEMI 48 2 9 12 11 6 310.0
440 CGOPMEN 54 2 9 12 11 U •5.0
440 CUD / 1 1 4
460 Clb a 1 4 7

470 LWE8 9 1 7 10
400 Cu 10 1 2 5
490 CWE& 11 1 5 9

IL00 LWEV 121 1 U Is
S10 CUED 13 1 3 6

:;30 LMLb 15 1 9 12
540 LWEP 16 1 5 4

550 CWED 17 1 6 5
560 CWL 16 1 7
570 CWE& 19 1 9 a
560 LWLB 20 1 11 10
590 CMLb 21 1 12 I
600 CROP' 22 I 1 4
610 CRO 23 1 4 7
.20 CkOD 24 I 7 10
Alo CROP 25 I 2 5
640 CRO 26 A 5 6
154 CROD 27 1 i it
66 cko0b 2 I 3 A
a70 CROi* 29 I & 9
680 CRO 30 I 9 12
690 CROD 31 1 S 4
700 CROD 32 1 • 5
710 CROD 33 a a 7
720 CR 0, 34 I 9 8
130 CRO 35 I Is 10
740 Cob 36 1 12 I1750 PODMlEMl 2 2 .025

7sO PUED I 1 .05
770 PROP I 1 .05
70 IT 1 10.546 .25 .10
790 +M -30000.030000.0

600 NAT2 2 18.570*4.334296 0.0 1.607+0 0.0 .6564 .0"S
010 *A --t~. low.

.1

Figure 23 Optforce 1I Input Data - Case 2 Swept Wingbox
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TABLE 12 SWEPT WINGBOX RESULTS - CASE 1, ALUMINUM MATERIAL

El. Element * Yz. El. Element , + I
No. Type Ai  No. Type A

I Quad .1000 27109.0 22 Rod .0500 19819.0
2 Quad .1000 27101.0 23 Rod .0500 13616.0

3 Quad .1000 21560.0 24 Rod .0500 5235.0
4 Quad .1000 20566.0 25 Rod 2.361 30000.0
5 Quad .1000 9675.0 26 Rod .0500 24598.0
6 Quad .1000 6955.0 27 Rod .0500 8486.0
7 Web .0806 29946.0 28 Rod .0500 22407.0
8 Web .0804 29946.0 29 Rod .0500 15907.0
9 Web .0500 24010.0 30 Rod .0500 6154.0
10 Web .1611 30000.0 31 Rod .0500 7886.0
11 Web .0587 30000.0 32 Rod .0500 4767.0
12 Web .0500 6874.0 33 Rod .0500 6235.0
13 Web .0500 17029.0 34 Rod .0500 3639.0
14 Web .0500 7287.0 35 Rod .0500 2792.0
15 Web .0500 9057.0 36 Rod .0500 2081.0
16 Web .1211 30000.0 Wi - 107.40 lbs.
17 Web .0500 17783.0 Um - 110.73 lbs.
18 Web .0742 30000.0 Z1 o - 12.63 in.
19 Web .0500 1684.0 CPU - 24.08 sec.**
20 Web .0500 27382.0 1 - I
21 Web .0500 8031.0

*Ai Design variable value, rod cross-sectional area (in2) web thickness

(in), quad membrane thickness (in)

**IBM 3033
SY

+ Stress constraint quantity: ga - i-- e - 1 : 0

where ai* is the yield stress or some other failure stress for the ith

finite element.
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thirty-six A's associated with internal stress fields and
thirty-three A's associated with the redundants, for a total
of 105. The design variable and stress V's sum to the minimu
weight value of W_=llO.73 lbs. This is a verification of the
theoretical development given in Section 2.0.

a The final design variable, displacement, element stress and
reaction vectors are calculated and presented to the User for
review. Minimum weight value is W - 110.73 lbs.

. m

Examination of Table 12 and Figure 24 shows the design variable vector

and element stress constraint quantity Yi/A,. The initial and final weight

of the structure is also depicted with a maximum vertical displacement of

12.63 inches. IBM 3033 computer time was recorded to be 24.08 seconds.

The number of iterations, 1-1, is tabulated to indicate the Linear Program-

ming phase operation. Figure 24 displays the design variable vector in

pictorial form.

The solution procedure for Case 2 was as follows:

0 Initial guess vector: Minium= size constraint with stress ratio
option, W1 a 60.05 lbs.

• Program entered the Linear Programming phase: "Solution Not
Feasible"; Use fully stressed design as minimum weight solution,
- - 83.32 lbs.

0 Performed check on Lagrange Multiplier (A ) calculation. Since
certain A's associated with the design vahables were negative
the full Nevton-Raphson routine was entered. This particular
application of OPTFORCE II required fifty-four A's associated
with the design variable vector, fifty-four A's associated with
internal stress distribution and one-hundred twenty-three A's
associated with the redundants for a total of 231.

* Solution procedure terminated after four iterations in the
full N-R routine due to an excessive numerical increment
associated with the first redundant causing structural weight
divergence. User may use the FSD solution.

Table 13 shows pertinent data obtained from the above solution

procedure. Note the drop in minim= weight through use of the graphite/

epoxy wingbox skins as compared to the all aluminum wingbox structural

112
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TABLE 13 SWEPT WINGBOX RESULTS - CASE 2, GRAPHITE/EPOXY & ALUMINUM MATERIALS

El. Element Y + El. Element Yi +

No. Type Ai* No. Type Ai

1 Quad .0250 41417.0 31 Rod .0500 6560.0
2 Quad .0250 48073.0 32 Rod .0500 3308.0
3 Quad .0250 41611.0 33 Rod .0500 8279.0
4 Quad .0250 41496.0 34 Rod .0500 4512.0
5 Quad .0250 11889.0 35 Rod .0500 1219.0
6 Quad .0250 18946.0 36 Rod .0500 5853.0
7 Web .0655 30000.0 37 Quad .0250 62091.0
8 Web .0875 30000.0 38 Quad .0250 67220.0
9 Web .0520 29968.0 39 Quad .0250 51672.0

10 Web .1654 30000.0 40 Quad .0250 33913.0
11 Web .0500 27775.0 41 Quad .0250 26318.0
12 Web .0500 3625.0 42 Quad .0250 11784.0
13 Web .0500 13716.0 43 Quad .0250 3079.0
14 Web .0500 5412.0 44 Quad .0250 10121.0
15 Web .0500 12279.0 45 Quad .0250 4762.0
16 Web .1368 30000.0 46 Quad .0250 18134.0
17 Web .0500 14070.0 47 Quad .0250 23628.0
18 Web .0784 30000.0 48 Quad .0250 2260.0
19 Web .0500 1374.0 49 Quad .0250 6327.0
20 Web .0500 21784.0 50 Quad .0250 4139.0
21 Web .0500 10887.0 51 Quad .0250 14479.0
22 Rod .0500 17595.0 52 Quad .0250 10712.0
23 Rod .0500 18751.0 53 Quad .0250 10238.0
24 Rod .0500 6953.0 54 Quad .0250 10683.0
25 Rod 3.9950 30000.0
26 Rod .7203 30000.0 W i  60.05 lbs.
27 Rod .0500 12794.0 Wm = 83.32 lbs.
28 Rod .0500 24769.0 Zio = 13.94 in.
29 Rod .0500 16438.0 CPU - 249.54 sec**

30 Rod .0500 10148.0 I = 5

*A Design variable value, rod ** IBM 3033
cross-sectional area (in2 ),

web thickness (in), quad + Stress constraint quantity

membrane thickness (in)
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weight. Computer time was registered to be 249.54 cpu seconds almost a

ten-fold increase over the all-metallic wing solution time. This is a

significant amount that the User should note for future applications of

OPTFORCE II. The increase in cpu time can be attributed to the increased

number of design variables and Lagrange multipliers. One hundred and

five X's were needed for the aluminum wing box solution. This number

increased to two hundred and thirty-one for the composite wing solution.

The number of iterations 1-5 is tabulated to indicate the Linear Program-

ming and full Newton-Raphson phase computations.

It is of interest to note that two additional analyses were con-

ducted to show the effect of convergence criteria (OPTIM input card) and

minimum size constraint imposed on the graphite/epoxy quadrilateral

membrane elements (PQDMEM1 input card). The initial convergence criteria

of .010 was changed to .0010. Results obtained were essentially those

shown in Table 13 except that the full N-R iteration routine was
b

terminated due to an excessive delta thickness experienced on element

number 18. Thus, in this particular application the change in converg-

ence criteria had very little effect upon determining the minimum weight

design with the exception of increasing cpu time from 249.54 sec to

287.41 sec. The second additional analysis completed reduced the minimum

thickness constraint of the membrane elements from .0250 inch to .0100

inches. The solution procedure again followed those steps initially

shown. The minimum weight value dropped to 73.47 lbs. as would be

expected and the deflection of the wingbox decreased slightly to 13.49

inches. Cpu time increased about 45 seconds to a value of 290.06. The

distribution of the design variables for this case is shown in Figure 25.
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4.0 CONCLUSIONS & RECONOENDATIONS

The pilot optimization program, OPTFORCE I (Ref. 4), h4s been

successfully extended to include new finite elements, optimization con-

straints and analysis type capabilities. Additionally, it has been expanded

into a general purpose type optimization code featuring NASTRAN compatible

input data formats and engineering User output features. As a result, it

is concluded that the technical requirements stated in Section C of the

subject contract F33615-80-C-3214 documents have been met. This has

resulted in a new optimization code labeled OPTFORCE II, the mathematical

basis of which has been amply described in this volume. The use of this

code has also been illustrated herein and its input/output features and

programming aspects are given in Volume Two of this publication, Ref. 11.

Specific tasks which came to a successful conclusion were the

formulation of finite element matrices basid upon the force method approach.

i Membrane triangle, membrane quadrilateral, shear panel and bar (axial force)

*elements were developed. The resultant formulations proved to be accurate

for use in the prediction of both static and dynamic behavior of structural

components. Their use in optimization analyses also proved to be success-

ful. Formulation of optimization constraint equations were straight-

forward and provided for the first time the opportunity to optimize

structures including variable stress, multiple displacement, maximum and

minimum size and dynamic stiffness (natural frequency) constraints all

within the context of the force method. Multiple load conditions are also

included in the formulation.

The force method formulation of a rapid re-analysis technique

concluded in a highly efficient means for evaluating the effect of damage
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on the static and dynamic response of optimized structures. The general

theory developed in Section 2.4 included the use of the aforementioned

finite elements, however, resources only permitted the coding of a rapid

re-analysis program using bar elements. This code is described and

illustrated in Appendix B of Volume II and is successfully demonstrated

in Section 2.4 of this volume. Its potential is proven therein by the

applications shown and provides a means for determining the residual strength

and response of damaged structures. The method is a direct one and elimin-

ates the iterative nature of other methods presently available in the

literature.

*Executions of OPTFORCE II were ample enough to conclude that the

* iinitial capabilities of the force method code OPTFORCE I could be success-

fully extended to optimize three-dimensional truss-like and aerospace type

structures. The applications of OPTFORCE II further proved that the force

method yields more accurate optimization solutions than the displacement

based OPTIM III reference computer code. The efficiency studies conducted

and profusely described in Section 3.1 showed this fact to be true. These

studies further demonstrated that computer time (cpu seconds) is a less

relevant measure of computer code "efficiency" than originally thought.

It is concluded from these studies that the OPTFORCE II code is preferred

over the reference displacement based OPTIM III code.

No difficulties were experienced with the use of OPTFORCE II when-

ever structures were optimized subject to minimum size and stress constraints.

Minimum weight solutions including displacement and/or dynamic constraints

in addition to size and stress constraints proved troublesome. No satis-

factory solutions could be found for the numerical difficulties encountered.

Obviously additional resources are needed to obviate this problem. It is
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concluded at this time that the difficulty lies not in the force method

formulation of those t3pe of constraints but in the numerical application

of attendant governing equations. It is recommended that further studies

of this perplexity be pursued.

Finally, it is concluded that the research conducted and reported

herein has shown that the force method of structural optimization has pro-

vided the solution to the technical problems discussed in the introduction

to this report. The force method approach gives the means to express

constraints, in particular the stress constraint, in such a manner as to

provide the needed mathematical expressions for use in the Lagrangan

formulation of the weight optimization solution procedure. This enhances

the definition of the optinality criteria and attendant first and second

derivatives used in the nonlinear solution procedure. Thus, it is further

recommended that the force method optimization procedure resident in

f OPTFORCE II be seriously considered as the future general purpose struc-

j tural optimization code.
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